Temperature - Statistical Mechanics
Table of Contents
1. Molecular Model
We have a molecular model of gases, which has from
\begin{equation} \delta Q = nC_{V}\,\mathrm{d}T \end{equation}And the increase in translational kinetic energy
\begin{equation} \delta K_{tr} = \frac{3}{2}nR\,\mathrm{d}T. \end{equation}Setting these equal, since the total molecular energy increase is stipulated to be \(\delta K_{tr}\), we find
\begin{equation} C_{V} = \frac{3}{2}R. \end{equation}This works for monatomic gases.
(defvar gas-constant 8.31446261815324) ;; mono-atomic molecules (* 1.5 gas-constant)
12.47169392722986
For diatomic gases, we need to account for rotational degrees of freedom, which changes \(3/2\) to \(5/2\) in the definition of total molecular energy:
\begin{equation} \delta K_{tr} = \frac{5}{2}nR\,\mathrm{d}T. \end{equation}This gives us:
\begin{equation} C_{V} = \frac{5}{2}R. \end{equation};; diatomic gases (* 2.5 gas-constant)
20.7861565453831