\(
\DeclareMathOperator{\tr}{tr}
\newcommand\D{\mathrm{d}}
\newcommand\E{\mathrm{e}}
\newcommand\I{\mathrm{i}}
\newcommand\bigOh{\mathcal{O}}
\newcommand{\cat}[1]{\mathbf{#1}}
\newcommand\curl{\vec{\nabla}\times}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\ZZ}{\mathbb{Z}}
% For +---- metric
\newcommand{\BDpos}{}
\newcommand{\BDneg}{-}
\newcommand{\BDposs}{\phantom{-}}
\newcommand{\BDnegg}{-}
\newcommand{\BDplus}{+}
\newcommand{\BDminus}{-}
% For -+++ metric
\newcommand{\BDpos}{-}
\newcommand{\BDposs}{-}
\newcommand{\BDneg}{}
\newcommand{\BDnegg}{\phantom{-}}
\newcommand{\BDplus}{-}
\newcommand{\BDminus}{+}
\)
Reading Notes on Landau and Lifshitz
A note on L&L's style. It seems that Landau and Lifshitz write in a
manner that's the mirror opposite of abstract mathematics. Instead of
"theorem" and then "proof", they provide a "proof" followed by a
"theorem" (but do not announce it with a bold Theorem prefix).
Consequently, reading L&L amounts to trying to figure out what claims
are made in a section, then reconstructing the proof.
Last Updated: Sun, 24 Apr 2022 09:22:11 -0700