Computing the Solar Constant
Problem
What is the mean solar electromagnetic radiation (solar irradiance) per unit area of the Earth?
Solution
Identify: We need to compute the irradiance of the Sun at the distance the Earth is from the Sun.
Setup and Execute: We need to use the Stefan–Boltzmann constant:
(defun stefan-boltzman () (let ((kb 1.380649e-23) (hbar (* 0.5 (/ 6.62607015e-34 pi))) (c 299792458.0)) (/ (* pi pi (expt kb 4.0)) (* 60.0 (expt (* c hbar) 2.0) hbar)))) (stefan-boltzman)
5.6703744191844294e-08
The luminosity of the Sun would be, theoretically:
(defun luminosity (r temperature) (* 4 pi (expt r 2.0) (stefan-boltzman) (expt temperature 4.0))) (let ((sun-temperature 5772.0) ;; K (sun-radius 695700.0) ;; km (earth-distance 149596000.0) ;; km (km 1000.0) (earth-radius 6378.1366)) ;; km (luminosity (* sun-radius km) sun-temperature))
3.827990903277097e+26
The irradiance on a point on the Earth would be
(defun irradiance (lumos distance) (* (/ lumos pi) (expt (* 2 distance) -2))) (let ((sun-temperature 5772.0) ;; K (sun-radius 695700.0) ;; km (earth-distance 149596000.0) ;; km (earth-radius 6378.1366) ;; km (km 1000.0)) ;; m/km (irradiance (luminosity (* sun-radius km) sun-temperature) (* km earth-distance)))
1361.197273723066
Compare this to the empirical value of the Solar constant which is about 1.361 kilowatts per square meter.