\( \DeclareMathOperator{\tr}{tr} \newcommand\D{\mathrm{d}} \newcommand\E{\mathrm{e}} \newcommand\I{\mathrm{i}} \newcommand\bigOh{\mathcal{O}} \newcommand{\cat}[1]{\mathbf{#1}} \newcommand\curl{\vec{\nabla}\times} \newcommand{\CC}{\mathbb{C}} \newcommand{\NN}{\mathbb{N}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}} % For +---- metric \newcommand{\BDpos}{} \newcommand{\BDneg}{-} \newcommand{\BDposs}{\phantom{-}} \newcommand{\BDnegg}{-} \newcommand{\BDplus}{+} \newcommand{\BDminus}{-} % For -+++ metric \newcommand{\BDpos}{-} \newcommand{\BDposs}{-} \newcommand{\BDneg}{} \newcommand{\BDnegg}{\phantom{-}} \newcommand{\BDplus}{-} \newcommand{\BDminus}{+} \)
UP | HOME

PDE Topics

1. References

  • John Hunter,
    Lecture notes for Math 218B.
    UC Davis, 2020, graduate course on partial differential equations. (Also taught in 2009, which includes additional notes on Sobolev spaces by Steve Shkoller)
  • J.W. Thomas,
    Numerical Partial Differential Equations: Finite Difference Methods.
    Springer, 1995; a wonderful book.

Last Updated: Tue, 5 Apr 2022 12:01:47 -0700