\( \newcommand\D{\mathrm{d}} \newcommand\E{\mathrm{e}} \newcommand\I{\mathrm{i}} \newcommand\bigOh{\mathcal{O}} \newcommand{\cat}[1]{\mathbf{#1}} \newcommand\curl{\vec{\nabla}\times} \newcommand{\CC}{\mathbb{C}} \newcommand{\NN}{\mathbb{N}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}} \)
UP | HOME

Monoid Object

Table of Contents

1. Definition

Let \((\cat{C}, \otimes, I)\) be a monoidal category.

Then a Monoid Object consists of an object \(M\in\cat{C}\) equipped with

  • a multiplication map \(\mu\colon M\otimes M\to M\)
  • a unit \(\eta\colon I\to M\)

such that

  • the pentagon diagram holds (i.e., the multiplication map is associative)
\begin{equation} \require{AMScd} \begin{CD} (M\otimes M)\otimes M @>e>> M\otimes(M\otimes M) \\ @V{\mu\otimes1}VV @VV{1\otimes\mu}V \\ M\otimes M @. M\otimes M \\ @V{\mu}VV @V{\mu}VV \\ M @= M \end{CD} \end{equation}
  • the left and right unit
\begin{equation} \begin{CD} I\otimes M @>{\eta\otimes1}>> M\otimes M @<{1\otimes\eta}<< M\otimes I\\ @V{\lambda}VV @V{\mu}VV @V{\rho}VV\\ M @= M @= M \end{CD} \end{equation}

2. Morphisms

Given two monoids \((M,\mu,\eta)\) and \((M', \mu', \eta')\) in a monoidal category \(\cat{C}\), a morphism \(f\colon M\to M'\) is a Morphism of Monoids when

  • \(f\circ\mu = \mu'\circ(f\otimes f)\)
  • \(f\circ\eta = \eta'\)

3. Examples

  • In Set, a monoid object is just a familiar Monoid we all know and love
  • In Ab, a monoid object is a ring
  • If \(\cat{C}\) is a monoidal category, then we can form a category of monoid objects internal to \(\cat{C}\) and this is denoted \(\mathrm{Mon}(\cat{C})\).

Last Updated 2021-06-01 Tue 10:00.