\( \newcommand\D{\mathrm{d}} \newcommand\E{\mathrm{e}} \newcommand\I{\mathrm{i}} \newcommand\bigOh{\mathcal{O}} \newcommand{\cat}[1]{\mathbf{#1}} \newcommand\curl{\vec{\nabla}\times} \newcommand{\CC}{\mathbb{C}} \newcommand{\NN}{\mathbb{N}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}} \)
UP | HOME

2-Groups

Table of Contents

1. Group Objects

For a brief review of Group Object internal to a category \(C\) with binary products and terminal object \(1\in C\) consists of an object \(G\in C\) equipped with

  • a unit \(e\colon 1\to G\)
  • an inverse mapping \((-)^{-1}\colon G\to G\)
  • a multiplication map \(m\colon G\times G\to G\)

such that:

  • multiplication is associative
\begin{equation} \require{AMScd} \begin{CD} G\times G\times G @>e\times m>> G\times G\\ @Vm\times eVV @VVmV \\ G\times G @>m>> G \end{CD} \end{equation}
  • the unit map picks out an element which is a left and right identity:
\begin{equation} \begin{CD} G\times 1 @<{!}<< G @>{!}>> 1\times G\\ @V{\mathrm{id}\times e}VV @V\mathrm{id}VV @VV{e\times\mathrm{id}}V \\ G\times G @>{m}>> G @<{m}<< G\times G \end{CD} \end{equation}
  • the inverse map is an honest-to-goodness inverse
\begin{equation} \begin{CD} G\times G @<{\Delta}<< G @>{\Delta}>> 1\times G\\ @V{\mathrm{id}\times(-)^{-1}}VV @V{e\circ!}VV @VV{(-)^{-1}\times\mathrm{id}}V \\ G\times G @>{m}>> G @<{m}<< G\times G \end{CD} \end{equation}

where we recall \({e\circ!}\colon G\to G\) is the composition of \(!\colon G\to 1\) with \(e\colon 1\to G\).

When we work with group objects in the category Set of sets, we recover groups as we know (and love) them.

When we work with group objects in the category Mfld of differentiable manifolds, we find them to be Lie groups.

2. Strict 2-Groups

A group object internal to Cat is a Strict 2-Group.

3. References

3.1. Group Objects

  • "Groups and Categories",
    Lecture Notes, PDF
  • Magnus Forrester-Barker,
    "Group Objects and Internal Categories".
    arXiv:math/0212065, 12 pages
  • Saunders MacLane,
    Categories for the Working Mathematician.
    Springer, 1971. See chapter III, §6.

Last Updated 2021-06-01 Tue 10:00.