\(
\DeclareMathOperator{\tr}{tr}
\newcommand\D{\mathrm{d}}
\newcommand\E{\mathrm{e}}
\newcommand\I{\mathrm{i}}
\newcommand\bigOh{\mathcal{O}}
\newcommand{\cat}[1]{\mathbf{#1}}
\newcommand\curl{\vec{\nabla}\times}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\ZZ}{\mathbb{Z}}
% For +---- metric
\newcommand{\BDpos}{}
\newcommand{\BDneg}{-}
\newcommand{\BDposs}{\phantom{-}}
\newcommand{\BDnegg}{-}
\newcommand{\BDplus}{+}
\newcommand{\BDminus}{-}
% For -+++ metric
\newcommand{\BDpos}{-}
\newcommand{\BDposs}{-}
\newcommand{\BDneg}{}
\newcommand{\BDnegg}{\phantom{-}}
\newcommand{\BDplus}{-}
\newcommand{\BDminus}{+}
\)
Calculus
Calculus is important for doing physics and science. There's some
tension between the symbolic computation of integrals, and the rigorous
analysis with integration. Sometimes we can compute symbolically
integrals which cannot be justified rigorously. I'm curious about
both situations.
- Exercises in calculus
- Integrals
- Kokeboken, reading notes on a Norweigen manuscript (its title loosely
translates to "Integral Cookbook")
Last Updated: Sun, 11 Apr 2021 12:12:32 -0700