\( \newcommand\D{\mathrm{d}} \newcommand\E{\mathrm{e}} \newcommand\I{\mathrm{i}} \newcommand\bigOh{\mathcal{O}} \newcommand{\cat}[1]{\mathbf{#1}} \newcommand\curl{\vec{\nabla}\times} \newcommand{\CC}{\mathbb{C}} \newcommand{\NN}{\mathbb{N}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}} \)
UP | HOME

Calculus

Calculus is important for doing physics and science. There's some tension between the symbolic computation of integrals, and the rigorous analysis with integration. Sometimes we can compute symbolically integrals which cannot be justified rigorously. I'm curious about both situations.

1. References

1.1. Vector Calculus

Last Updated 2021-06-01 Tue 10:00.