\( \newcommand\D{\mathrm{d}} \newcommand\E{\mathrm{e}} \newcommand\I{\mathrm{i}} \newcommand\bigOh{\mathcal{O}} \newcommand{\cat}[1]{\mathbf{#1}} \newcommand\curl{\vec{\nabla}\times} \newcommand{\CC}{\mathbb{C}} \newcommand{\NN}{\mathbb{N}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}} \)
UP | HOME

Landau Notation

Table of Contents

1. Squiggle

We write \(f(x)\sim g(x)\) as \(x\to x_{0}\) — usually with \(f\) being some complicated mess, and \(g\) something simple like a monomial — if

\begin{equation} \lim_{x\to x_{0}}\frac{f(x)}{g(x)} = 1. \end{equation}

We say \(f(x)\) and \(g(x)\) are Asymptotically Equivalent as \(x\to x_{0}\) if \(f(x)\sim g(x)\).

We could use a truncated Taylor polynomial about \(x_{0}\) of \(f(x)\) to get a \(g(x)\) such that \(f(x)\sim g(x)\) as \(x\to x_{0}\), since \(g(x)\to f(x_{0})\) in that limit by construction.

2. Big Oh

We write

\begin{equation} f(x) = \mathcal{O}(g(x))\quad\mbox{as}\quad x\to x_{0} \end{equation}

if the ratio \(f(x)/g(x)\) is bounded as \(x\to x_{0}\); i.e., there is some positive numbers \(\delta\gt0\) and \(M\gt0\) such that for any \(x\)

\begin{equation} |x-x_{0}|\lt\delta\implies |f(x)|\leq Mg(x). \end{equation}

Alternatively, we could consider the condition

\begin{equation} \limsup_{x\to a} \frac{\left|f(x)\right|}{g(x)}\lt\infty. \end{equation}

2.1. Arithmetic

If \(f_{1}=\mathcal{O}(g_{1})\) and \(f_{2}=\mathcal{O}(g_{2})\), then \(f_{1}f_{2}=\mathcal{O}(g_{1}g_{2})\).

If \(k\) is a nonzero constant, and if \(f=\mathcal{O}(g)\), then \(kf=\mathcal{O}(g)\). Further, \(\mathcal{O}(|k|g)=\mathcal{O}(g)\).

If \(f_{1}=\mathcal{O}(g_{1})\) and \(f_{2}=\mathcal{O}(g_{2})\), then \(f_{1}+f_{2}=\mathcal{O}(\max(g_{1},g_{2}))\).

The set of \(\mathcal{O}(g)\) functions form a convex cone.

2.2. Notation

We often write things like

\begin{equation} f(x) = g(x) + \mathcal{O}(h(x)) \end{equation}

to mean the same thing as

\begin{equation} f(x)-g(x) = \mathcal{O}(h(x)). \end{equation}

It's not uncommon to do mathematics with big-O terms when doing asymptotic analysis.

3. Little Oh

The intuition for \(f(x) = \mathcal{o}(g(x))\) as \(x\to x_{0}\) is "\(g(x)\) grows much faster than \(f(x)\)". Formally, it is

\begin{equation} \lim_{x\to x_{0}}\frac{f(x)}{g(x)} = 0. \end{equation}

We also write \(f(x)\ll g(x)\) as \(x\to x_{0}\) to indicate the same thing.

We see \(\sin(x)\ll 1\) and \(\sin(x)\sim x\) as \(x\to 0\).

3.1. Arithmetic

If \(k\) is a nonzero constant, and if \(f=\mathcal{o}(g)\), then \(cf = \mathcal{o}(g)\).

If \(f=\mathcal{o}(F)\) and if \(g=\mathcal{o}(G)\), then \(fg=\mathcal{o}(FG)\).

If \(f=\mathcal{o}(g)\) and if \(g=\mathcal{o}(h)\), then \(f=\mathcal{o}(h)\).

Last Updated 2021-06-01 Tue 10:00.