\( \DeclareMathOperator{\tr}{tr} \newcommand\D{\mathrm{d}} \newcommand\E{\mathrm{e}} \newcommand\I{\mathrm{i}} \newcommand\bigOh{\mathcal{O}} \newcommand{\cat}[1]{\mathbf{#1}} \newcommand\curl{\vec{\nabla}\times} \newcommand{\CC}{\mathbb{C}} \newcommand{\NN}{\mathbb{N}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\ZZ}{\mathbb{Z}} % For +---- metric \newcommand{\BDpos}{} \newcommand{\BDneg}{-} \newcommand{\BDposs}{\phantom{-}} \newcommand{\BDnegg}{-} \newcommand{\BDplus}{+} \newcommand{\BDminus}{-} % For -+++ metric \newcommand{\BDpos}{-} \newcommand{\BDposs}{-} \newcommand{\BDneg}{} \newcommand{\BDnegg}{\phantom{-}} \newcommand{\BDplus}{-} \newcommand{\BDminus}{+} \)
UP | HOME

Algebraic Groups

Table of Contents

1. Overview

T.A. Springer's Linear Algebraic Groups seems like a suitably rigorous text to formalize, perhaps consulting Geck's An Introduction to Algebraic Geometry and Algebraic Groups for additional results.

1.1. Existing Relevant Definitions

  • topzari1 formalizes the Zariski Topology

Last Updated: Thu, 14 Apr 2022 14:20:32 -0700