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1 Introduction

1.1. Definition. The set of all possible outcomes of an experiment is called the
“Sample Space” and denoted Ω. An “Elementary Event” is an element of Ω,
whereas a “Event” is a subset of Ω.

Caution: We will abuse notation, and mix up the singleton {x} with the
element x. So {x} is an elementary event, and usually just referred to as x.

1.2. Example. Flipping a coin has two results: heads H, tails T . The sample
space is

Ω = {H,T }. (1.1)

What’s an event? Well, lets consider a few:

1. We flip the coin and get a heads.

2. We get either a heads or a tails.

3. The outcome is both a heads and tails.

4. The outcome is not a heads.

Note that the first and last examples are elementary events, the others are not
elementary.

1.3. Remark. This process “flipping a coin”, is generalized in mathematics to
any experiment with two outcomes: either heads or tails; the baby is either a boy
or a girl; the cat is either dead or alive1. This experiment is called a “Bernoulli
trial”, and it’s the foundation of most (all?) of probability theory.

1.4. Example. Not all sample spaces are finite. For example, consider an ex-
periment describing the decay of an unstable particle. How long does it take? Well,
the sample space would be

Ω = {x ∈ R : x ≥ 0}. (1.2)

This is quite infinite!

1.5. Definition. We want to think of subsets of the sample space as events.
The sample space is a “certain event”: something’s definitely going to happen. So
now we want to define the “collection of all events (of our sample space)”. . . but
not every subset is an event! So we need some axioms/specifications.

We define a “σ-Field” (or σ-Algebra) F to be the set of events of our sample
space Ω. But that’s not the end of the story: we have a bunch of axioms to consider.

First, it seems sound to suggest for any pair of events A and B (i.e., A,B ∈ F),
we can form new events “A and B” as well as “A or B”. These correspond to the
operations

A and B = A ∩B, and A or B = A ∪B.

Good, well, so what?

Axiom (Closed under pair-wise “And”, “Or”). If A,B ∈ F , then A∪B ∈ F and
A ∩B ∈ F .

Under a similar vein of reasoning, if we have an event A ∈ F , then its com-
plement A{ (read “The event that A does not occur”) should also be an event:
A{ ∈ F . So, we have

1When observed!
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Axiom (Closed under complements). If A ∈ F , then A{ ∈ F .

The last axiom is quite simple: nothing is an event. What’s “nothing”? The
empty set:

Axiom (Nothing is an event). We have ∅ ∈ F .

Is this really the last axiom? No, we weren’t honest with our first axiom. We
have something more: we could have an infinite number of “and” (but not an
infinite number of “or”).

Axiom. If Ai ∈ F , then

∞⋃
i=1

Ai ∈ F

When is this useful? Suppose we want to flip a coin, and keep flipping until we
get a heads. What’s the sample space look like? Well, it’d be

Ω = {H,TH, TTH, TTTH, . . . }. (1.3)

The event that we flip the coin an even number of times is

E = {TH, TTTH, TTTTTH, . . . }. (1.4)

Unless we have this last axiom, we couldn’t construct it!

1.6. Example. The smallest σ-algebra associated to any sample space Ω is

F = {∅,Ω}. (1.5)

It “obviously” satisfies the four axioms.

1.7. Example. The next smallest algebra associated to Ω is, if A is any subset
of Ω, then

F = { ∅, A,A{,Ω }. (1.6)

Although a little trickier to show, it also satisfies the axioms.

1.8. Example. When Ω is finite2, its powerset (the set of all subsets) of Ω is
a σ-algebra. This is the most common σ-algebra used when working with finite
sample spaces.

2 Probability

2.1. There are two interpretations to probability. Avoiding philosophical argu-
ments, we suggest probability is a function Pr(−) that assigns to each event in our
sample space X ∈ Ω a number Pr(X) such that a bunch of axioms hold.

2.1.1. Remark. The “Objectivist” interpretation suggests

Pr(X) =
number of trials where X is the value

total number of trials
=
N(X)

N(Ω)
(2.1)

whereas Bayesian probability theorists suggest probability is really “belief” that X
is the outcome of a trial. In either event, we can deduce a number of axioms from
Equation (2.1).

2For infinite sample spaces, things get tricky because we’re really going to do “integration” on
our set. For the real numbers, for example, its powerset includes the natural numbers. . . but an
integral over the natural numbers embedded in the reals is zero! We get strange results like that:
where things should have some probability, they instead have none.

3



2.2. Probability. First we should note we cannot have more outcomes taking
value X than there are outcomes:

N(X) ≤ N(Ω) (2.2)

Consequently, when we divide through both sides we get

N(X)

N(Ω)
≤ 1. (2.3)

Similarly cannot have a “negative number” of events occur, so

0 ≤ N(X) (2.4)

for any X. Thus we see

0 ≤ Pr(X) ≤ 1 for any X ∈ Ω. (2.5)

This is one axiom.

Axiom. We have Pr(X) ∈ [0, 1], i.e., 0 ≤ Pr(X) ≤ 1 for any X ∈ F .

Observe, we can deduce from this another specification. Namely,

Pr(Ω) =
N(Ω)

N(Ω)
= 1. (2.6)

Similar reasoning suggests

Pr(∅) =
0

N(Ω)
= 0. (2.7)

These form another axiom.

Axiom (Certainty Something Happens, Nothing Happens). We have Pr(Ω) = 1
and Pr(∅) = 0.

When we consider events X1, . . . , Xn ∈ F which are disjoint (so Xi ∩Xj = ∅
for i 6= j), what happens to the probability? We have

Pr

(⋃
i

Xi

)
=
∑
i

Pr(Xi).

Does this make sense? The intuition should be “The probability that one of the
Xi’s occur is the sum of the probability of each event” which makes sense if they’re
disjoint events (there’s “no overlap”). This gives us our last axiom:

Axiom (Disjoint Events). If Xi ∈ F is a (possibly infinite) family of disjoint
events, then

Pr

(⋃
i

Xi

)
=
∑
i

Pr(Xi). (2.8)

2.1 Examples

2.3. Coin Tossing. We flip a coin once. The coin may be biased or fair. We
take Ω = {H,T } and F = {∅, H, T,Ω}. A possible probability measure3

Pr: F → [0, 1]

given by
Pr(H) = p, Pr(T ) = 1− p (2.9)

where 0 ≤ p ≤ 1, and the “obvious values” Pr(∅) = 0, Pr(Ω) = 1. When p = 1/2,
then we call the coin “fair” or “unbiased.”

3There are many different acceptable probability measures, if we are being honest. But this is
the measure the reader probably has in mind.
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2.4. Dice. A six-sided die is thrown once. We have the possible outcomes be
Ω = { 1, 2, 3, 4, 5, 6 } and F = P(Ω) (where P(X) is the power set of X). The
probability measure Pr is given by

Pr(A) =
∑
i∈A

pi for any A ⊆ Ω (2.10)

where p1, . . . , p6 are specified numbers in the unit interval [0, 1] whose sum is 1.
Note that pk is the probability we roll a k. The die is “fair” if

Pr(A) =
|A|
6

for any A ⊆ Ω (2.11)

where |A| is the Cardinality of A.

2.5. Definition. A “Probability Space” consists of a sample space Ω equipped
with its σ-algebra F and probability measure Pr: F → [0, 1].

We will often simply state “Given a probability space (Ω,F ,Pr), . . . ” with the
understanding what each component means.

Note that a probability space represents one experiment. It’s the outcomes (i.e.,
the sample space) equipped with the events (i.e., the σ-algebra F) and a description
of outcomes (i.e., probability measure).

2.6. Lemma. Given a probability space (Ω,F ,Pr), and A,B ∈ F , then the
following hold:

1. For any A ∈ F , we have Pr(A{) = 1− Pr(A).

2. If A ⊆ B, then Pr(B) = Pr(A) + Pr(B \A) ≥ Pr(A).

3. Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

Proof. (1) We see that A{∪A = Ω and A{∩A = ∅. So these are disjoint events, and
by our axioms we have Pr(A∪A{) = Pr(A)+Pr(A{) = 1. Thus Pr(A{) = 1−Pr(A).

(2) We see that A ∩ (B \A) = ∅, which implies

Pr
(
A ∪ (B \A)

)
= Pr(A) + Pr(B \A).

But A ∪ (B \A) = B, which implies the result.
(3) We see A ∪B = A ∪ (B \A). Then

Pr(A ∪B) = Pr(A) + Pr(B \A)

since the right hand side is disjoint. We then note that

B \A = B \ (A ∩B)

which allows us to write

Pr(A ∪B) = Pr(A) + Pr(B \A)

= Pr(A) + Pr
(
B \ (A ∩B)

)
and using result (2) we have

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B) (2.12)

as desired.
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2.7. Lemma. For A1, . . . , An events (not necessarily disjoint), we have

Pr

(
n⋃
i=1

Ai

)
=
∑
i

Pr(Ai)−
∑
i<j

Pr(Ai ∩Aj)

+
∑
i<j<k

Pr(Ai ∩Aj ∩Ak) + . . .

+ (−1)n+1 Pr(A1 ∩ · · · ∩An).

(2.13)

Note this is a more general result than lemma 2.6’s. We prove it by induction.

Proof. Base Case (n = 2): this is precisely lemma 2.6’s result.
Inductive Hypothesis: assume this works for arbitrary n.
Inductive Case: When we have A1, . . . , An, An+1, we have

Pr

(
n+1⋃
i=1

Ai

)
= Pr

(
n⋃
i=1

Ai ∪An+1

)
(2.14)

Let B =
⋃n
i=1Ai, then we rewrite this equation as

Pr

(
n+1⋃
i=1

Ai

)
= Pr (B ∪An+1) (2.15)

which is precisely the base case!

2.8. Proposition. Let Ak be a sequence of increasing events, i.e.,

A1 ⊆ A2 ⊆ A3 ⊆ . . . (2.16)

Let

A =

∞⋃
k=1

Ak = lim
k→∞

Ak, (2.17)

then
Pr(A) = lim

k→∞
Pr(Ak). (2.18)

Similarly, if Bj is a decreasing sequence of events, so B1 ⊇ B2 ⊇ B3 ⊇ . . . , then

B =

∞⋂
j=1

Bj = lim
j→∞

Bj (2.19)

satisfies
Pr(B) = lim

j→∞
Pr(Bj). (2.20)

Proof. For the first statement, it’s easy to see

N⋃
k=1

Ak ⊆ AN (2.21)

We can take the limit as N →∞ on both sides to get the desired relation. We also
see that

A1 ∪
N⋃
k=2

(Ak \Ak−1) =

N⋃
k=1

Ak. (2.22)
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Thus we find

Pr(A) = Pr(A1) + lim
N→∞

N∑
k=2

Pr(Ak)− Pr(Ak−1) = lim
N→∞

Pr(AN ). (2.23)

Similar reasoning holds for the second statement.

2.2 Conditional Probability

2.9. Suppose we have two events A, B. What’s the probability, if B occurs, that
A will occur? These sort of conditional statements we’re interested in, usually in
scientific fields. What would the probability look like? Lets denote Pr(A|B) be the
probability of A given B. Then the probability of A and B happening would be

Pr(A|B) Pr(B) = Pr(A ∩B). (2.24)

If we accept this, then

Pr(A|B) =
N(A ∩B)

N(B)
=

Pr(A ∩B)

Pr(B)
(2.25)

where we implicitly divide both the numerator and denominator by N(Ω) to get
the fraction of probabilities.

2.10. Definition. If Pr(B) > 0, then the “Conditional Probability” that A
occurs given B definitely occurs is defined as

Pr(A|B) =
Pr(A ∩B)

Pr(B)
. (2.26)

2.11. Example (Children). Suppose a couple has two children. The sample
space is

Ω = {BB,BG,GB,GG } (2.27)

where the each element of the sample space indicates what the children are (so BG
indicates the first is a boy, while the second is a girl). What’s the probability, given
one child is a boy, that both children are boys?

Solution: Well, we see that the event one is a boy X is really

X = {BG,GB,BB } (2.28)

We suppose for simplicity that the probability of each outcome in the sample space
is equal, so

Pr(GG) = Pr(GB) = Pr(BG) = Pr(BB) = 1/4. (2.29)

Thus we see

Pr(BB|X) =
Pr(BB ∩X)

Pr(X)

=
Pr(BB)

Pr(X)

=
1/4

3/4
=

1

3
.

(2.30)

Note this is contrary to popular intuition, which would vaguely suggest the solution
is 1/4.
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2.12. Lemma. Let A and B be events, 0 < Pr(B) < 1. Then

Pr(A) = Pr(A|B) Pr(B) + Pr(A|B{) Pr(B{). (2.31)

The proof is direct.

Proof. We substitute the definition of conditional probability

Pr(A) = Pr(A|B) Pr(B) + Pr(A|B{) Pr(B{) (2.32a)

=
Pr(A ∩B)

Pr(B)
Pr(B) +

Pr(A ∩B{)

Pr(B{)
Pr(B{) (2.32b)

= Pr(A ∩B) + Pr(A ∩B{) (2.32c)

But look, the events A ∩B and A ∩B{ are disjoint. So we have

Pr(A ∩B) + Pr(A ∩B{) = Pr
(
(A ∩B) ∪ (A ∩B{)

)
. (2.32d)

Look, this is quite simply

Pr
(
(A ∩B) ∪ (A ∩B{)

)
= Pr(A) (2.32e)

precisely as desired.

2.13. Lemma. Let Bi be a family of disjoint events such that⋃
i

Bi = Ω. (2.33)

Then
Pr(A) =

∑
i

Pr(A|Bi) Pr(Bi). (2.34)

The proof is similar to the previous lemma.

Proof. We begin by using the definition of conditional probability∑
i

Pr(A|Bi) Pr(Bi) =
∑
i

Pr(A ∩Bi)
Pr(Bi)

Pr(Bi) (2.35a)

=
∑
i

Pr(A ∩Bi). (2.35b)

But look, the events A ∩ Bi are disjoint since Bi is a family of disjoint events. So
we can write this as ∑

i

Pr(A ∩Bi) = Pr

(⋃
i

A ∩Bi

)
(2.35c)

Using set theoretic properties of set union and intersection, we can write this as

Pr

(⋃
i

A ∩Bi

)
= Pr

(
A ∩

⋃
i

Bi

)
(2.35d)

By hypothesis, the union of all Bi is the sample space, so we have

Pr

(
A ∩

⋃
i

Bi

)
= Pr(A ∩ Ω) = Pr(A) (2.35e)

precisely as desired.
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2.14. Remark on Examples: Inheritance from Past. In probability, a lot
of examples involve drawing items (e.g., colored balls, slips of paper, etc) from urns.
This is because the Bernoulli family, who pioneered most of probability theory in
18th century France, were using then-contemporary situations. You would cast
ballots in an urn, etc. Even today in France, the phrase “going to vote” is aller aux
urnes.

2.15. Example (Balls from Urn). Given two urns, each containing colored
balls. Urn I contains two white and three blue balls, urn II contains three white
and four blue balls. A ball is drawn randomly from urn I and put into urn II, then
a balled is picked at random from urn II and examined. What is the probability
the examined ball is blue?

Solution: Really, this is two events going on. Event 1 is transferring a ball from
urn I to urn II, and event 2 is the color of the ball drawn from urn II.

So, let B be the event that a white ball is transferred from urn I to urn II. Then
B{ is the event it’s a blue ball transferred. The event A is the examined ball is
blue. So

Pr(A) = Pr(A|B) Pr(B) + Pr(A|B{) Pr(B{) (2.36)

But look, we can start calculating some stuff out:

Pr(B) =
2

5
, and Pr(B{) =

3

5
. (2.37)

The conditional probabilities are easier to compute now:

Pr(A|B) =
4b

4w + 4b
=

1

2
(2.38)

where w stands for “white ball”, b for “blue ball”, and

Pr(A|B{) =
5b

3w + 5b
=

5

8
. (2.39)

Thus we see

Pr(A) = Pr(A|B) Pr(B) + Pr(A|B{) Pr(B{) (2.40a)

=
1

2
· 2

5
+

5

8
· 3

5
=

23

40
. (2.40b)

2.16. Example (Elbonian Widgets). In the tiny country of Elbonia4, there
are two widget factories. But 20% of the widgets produced by factory I are defective,
whereas 5% from factory II are defective. Factory I produces twice as many widgets
as factory II. What’s the probability a given Elbonian widget is satisfactory?

Solution: Let A be the event the widget is satisfactory, and B the event it’s from
factory I. We see

Pr(B) =
2

3
(2.41)

and so
Pr(A) = Pr(A|B) Pr(B) + Pr(A|B{) Pr(B{). (2.42)

The conditional probabilities are given, or at least easily deduced

Pr(A|B) = 1− 1

5
(2.43a)

Pr(A|B{) = 1− 1

20
. (2.43b)

4A fictional country from the comic strip “Dilbert.”
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We see then

Pr(A) =
4

5
· 2

3
+

19

20
· 1

3

=
51

60
.

(2.44)

This concludes our example (roughly 5 out of 6 Elbonian widgets are satisfactory).

2.3 Independent Events

2.17. Suppose we have two events X and Y . If Y does not depend on X, we
expect

Pr(Y |X) = Pr(Y ). (2.45)

Lets try to consider a slightly more general situation. If we multiply both sides of
Eq (2.45) by Pr(X), we get

Pr(Y |X) Pr(X) = Pr(X ∩ Y )

= Pr(Y ) Pr(X)
(2.46)

which gives us the desired condition for “independence.”

2.18. Definition. Let X, Y be events. We call them “Independent Events”
if and only if

Pr(X ∩ Y ) = Pr(X) Pr(Y ). (2.47)

More generally, for a family of events Xi, they are independent iff

Pr

⋂
j

Xj

 =
∏
j

Pr(Xj) (2.48)

Why is this a good definition? If X or Y has probability zero, we avoid the risk
of dividing by zero. This could not have been avoided using Eq (2.45). But notice
our condition for independence implies Eq (2.45)!

Caution: Do not make the rookie mistake thinking, for a family of events Xj ,
independence holds iff for each i 6= j we have Pr(Xi∩Xj) = Pr(Xi) Pr(Xj). This is
pairwise independence, and not necessarily the same as implying the family consists
of independent events.

2.19. Example (Pairwise Independence Problems). Suppose we have

Ω = {abc, acb, cab, cba, cab, bca, bac, aaa, bbb, ccc} (2.49)

and they are all equal probable outcomes. Let Ak be the event the kth letter is a.
We claim {A1, A2, A3} is a family of pairwise independent events. Observe each

Ak has three events. For example, A1 = {abc, acb, aaa}. Then we see

Pr(Ai ∩Aj) = Pr(aaa) =
1

9
(2.50)

and

Pr(Ai) Pr(Aj) =
1

3
· 1

3
=

1

9
. (2.51)

Thus we see
Pr(Ai ∩Aj) = Pr(Ai) Pr(Aj) (2.52)
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for i 6= j. This is the definition of pair-wise independent.
However, observe

Pr(A1 ∩A2 ∩A3) = Pr(aaa) =
1

9
(2.53)

whereas

Pr(A1) Pr(A2) Pr(A3) =
1

27
. (2.54)

So we have
Pr(A1 ∩A2 ∩A3) 6= Pr(A1) Pr(A2) Pr(A3). (2.55)

That is to say, our family of pairwise-independent events is not a family of inde-
pendent events!

2.4 Product Space

2.20. Proposition. Let F , G be σ-algebras over Ω. Then F ∩ G is also a
σ-algebra over Ω.

More generally, if Fi is a family of σ-algebras over Ω, then⋂
i

Fi = F̃ (2.56)

is a σ-algebra over Ω.

2.21. Problem: We claim that, if F and G are σ-algebras over Ω, then F ∪ G
is not a σ-algebra over Ω. No!

But we can uniquely extend F ∪G to a “smallest” σ-algebra containing both F
and G as subalgebras. What to do? We simply consider the collection

{Hi : F ⊆ Hi, and G ⊆ Hi} (2.57)

then we construct ⋂
i

Hi = H. (2.58)

This is the smallest such σ-algebra containing both F and G.

2.22. Recall we describe an experiment using a probability space. But what if
we want to have a “composite” experiment? Say, flip a coin and draw a card from
a deck. How can we describe this experiment? Let us try to consider it!

We want to combine (Ω1,F1,Pr1) and (Ω2,F2,Pr2). What to do?
First lets construct the sample space. We expect, correctly, that

Ω = Ω1 × Ω2 (2.59)

is our sample space.
Next the σ-algebra. This is more subtle, and requires some justification (given in

our discussion of “completeness”). The set F1×F2 is not a σ-algebra. But we can
construct the smallest σ-algebra containing it! We use this “smallest” σ-algebra.
We use the same process outlined in §2.21.

The probability measure is simply Pr12(A1 × A2) = Pr1(A1) Pr2(A2), where
A1 ∈ F1 and A2 ∈ F2.
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2.4.1 Completeness

Caution: For a “first read”, this discussion of “completeness” may be skipped.
It’s only useful when dealing with Ω that’s infinitely large (something uncountably
infinite like [0, 1] ⊆ R).

2.23. Probability is a special form of “measure theory”, i.e., probability assigns
some “volume” to an event. The “volume” is just the likelihood the event will
occur, i.e., the “volume” is the event’s probability. There are some subtle measure
theoretic topics that needs to be discussed. Consequently, this bit on “complete-
ness” can be skipped on the first read. But the motivation will be given, and should
be read.

2.24. Motivation: Suppose we have R with a Lebesgue measure µ. So µ(x) =
0 for any x ∈ R, the length of a point is zero. Then we can try to naively construct
the product space R2 with the measure µ2(A×B) = µ(A)µ(B). This has the merit
that for any measurable A ⊆ R we have

µ2({0} ×A) = µ(0)µ(A) = 0 (2.60)

but only if A is measurable. What if A is not measurable? Well, we expect the
result to be the same: zero. But instead we get “This is an undefined question!”

2.25. For probability, this is saying if we have a product probability space Ω1×Ω2

and some event A×B, when A is a subset of a null event we expect Pr(A×B) = 0.
This is a technical condition that appears unclear,

2.5 Worked Examples

2.26. Overview. Tools. We will consider some examples, to solidify under-
standing of the concepts of probability.

Note that one can get a good handle on approximating probability by taking Ω
and considering its elements as equi-probable, i.e., Pr(x) = 1/N where x ∈ Ω and
N = |Ω|. Then any A ⊆ Ω has probability Pr(A) = |A|/N . This relieves the reader
from determining the σ-algebra and the probability measure on it.

There are three basic techniques we will use:

1. Combinatorics: there are n! ways to permute n objects, and
(
n
r

)
different

ways to choose r objects (without replacement) from n possible.

2. Set theory: recall we can partition the sample space, and work with the
partitions for probability.

3. Independence: don’t forget independent events!

2.27. Example (Poker). Every player is dealt 5 cards. For simplicity, suppose
each player receives their 5 cards all at once. What is the probability that you, the
first to receive cards, will get four-of-a-kind?

Solution: There are 52 cards in a deck, we partition it into the 13 sets of “kinds”
(that is, by rank). One approximate solution would suggest that the probability is

Pr(K) ≈ 1(
13
1

) =
1

13
≈ 0.076923 (2.61)

We can refine this slightly by considering the events.
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Let X be the first card drawn. We will consider strings of the form XYNY N
where Y indicates the card is the same rank as X, N indicates a different rank.
The desired events are

A = {XNY Y Y,XY NY Y,XY Y NY,XY Y Y N} (2.62)

These are, needless to say, independent events. The probabilities are

Pr(XNY Y Y ) =
48 · 3 · 2 · 1

51 · 50 · 49 · 48
=

1

20825
, (2.63)

and since all five cards are dealt at once, the other probabilities are the same. So
we have

Pr(A) =
1

4165
≈ 0.00024 (2.64)

which is considerably worse than our first approximation!

Variations: What if we have n players, and each player is dealt only one card
at a time until each player has 5 cards? What’s the probability of obtaining a
four-of-a-kind?

What if we have k decks? What’s the probability getting four-of-a-kind?

2.28. Example. There are three cities: A, B, C. Two roads connect A and
B, and two roads connect B and C. In Winter, each road has probability p being
closed due to snow. This probability is independent of other roads being closed.
What is the probability there is an open road connecting A to C?

Solution: Let X be the event there is an open road connecting A and B, Y
be the event there is an open road connecting B and C. Then we want to find
Pr(X ∩ Y ). Luckily, these events are independent, so we have

Pr(X ∩ Y ) = Pr(X) Pr(Y ). (2.65)

The probability that there is an open road connecting A and B is simply

Pr(X) = 1− Pr(X{) (2.66a)

where X{ is the event both roads connecting A and B are closed. Since both roads
being closed are independent of each other, we find

Pr(X{) = p2 (2.66b)

and thus
Pr(X) = 1− p2. (2.66c)

The probability for Y is the same

Pr(Y ) = 1− p2. (2.67)

Thus the probability that some road is open is

Pr(X ∩ Y ) = (1− p2)2 = 1− 2p2 + p4. (2.68)

For example, if p = 0.5, then Pr(X ∩ Y ) = 0.5625.

Variations: What if the probability that both roads (connecting two given cities)
is closed becomes dependent on each other?

What if we let there be n cities: A1, . . . , An, and “neighboring” cities Aj−1, Aj
are connected by precisely 2 roads. What is the probability there exists an open
route (sequence of roads) connecting A1 to An?

What if we let each neighboring cities be connected by k ∈ N roads? Or have
f(Ai, Aj) ∈ N0 roads connecting Ai and Aj? That is, we have a completely general
undirected graph, what’s the probability that any two given cities are connected?

13



2.29. Example. A man is saving up to a buy a car. His banker advises the
man to take up gambling. The man has k units of money, but he needs N . So he
goes to a casino, and plays a game with the following rules: the man flips a coin,
if it’s head the man gets 1 unit of money, and if it’s tails the man pays 1 unit of
money. What’s the probability the man gets N units of money?

Assume it’s a fair coin.

Solution: Let B be the event the man goes bankrupt. Let H be the event the
first flip is a heads. We will write Prk to indicate that we are working with the
condition the amount of money the man has is k units. We use lemma 2.12 to write

Prk(B) = Prk(B|H) Prk(H) + Prk(B|H{) Prk(H{) (2.69a)

but we can note Pr∗(H) = Pr∗(H
{) = 1/2, thus

Prk(B) =
Prk(B|H) + Prk(B|H{)

2
. (2.69b)

Note that Prk(B|H) = Prk+1(B) and Prk(B|H{) = Prk−1(B) allows us to write
this as

Prk(B) =
Prk+1(B) + Prk−1(B)

2
. (2.69c)

Let pk = Prk(B), then we have a recurrence relationship

pk =
pk+1 + pk−1

2
(2.69d)

where 0 < k < N . Note that p0 = 1 (if the man has no money, he’s definitely
bankrupt), and pN = 0 (the man stops when he has N units, and hence cannot go
bankrupt).

Let qk = pk − pk−1. We claim

qk = qk−1. (2.70)

Subtract (pk + pk−1)/2 from both sides of Eq (2.69d) gives us

pk −
1

2
(pk + pk−1) =

(pk+1 + pk)− pk − pk−1

2
(2.71a)

which reduces to
pk − pk−1

2
=
pk+1 − pk

2
(2.71b)

or equivalently
qk
2

=
qk+1

2
(2.71c)

which proves the claim.
Thus qk = q1 for any k. But more importantly

pk = qk + qk−1 + · · ·+ q1 + p0 = kq1 + p0. (2.72)

Thus we have, using our conditions p0 = 1 and pN = 0

q =
−1

N
, and pk = 1− k

N
. (2.73)

What does that mean? As the price increases (i.e., as N →∞), the probability of
bankruptcy pk → 1.

The moral of the story is, of course, avoid bankers.
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Variations: What’s the probability of bankruptcy if the man uses a biased coin?

2.30. Example (Court). The court investigates whether some event X has
happened. There are two witnesses, Tisias and Corax. Given some event, Tisias
describes it reliably with probability τ . Likewise, Corax is reliable with probability
γ. Let T be the event Tisias asserts X happened, C be the event Corax asserts X
happened. Assuming the events C and T are independent (i.e., no collusion between
Tisias and Corax), and given both testify X occurred, what is the probability that
X really did occur?

Solution: Let Pr(X) = x. Then we note the reliability condition for Corax
implies

Pr(C|X) = γ, and Pr(C|X{) = 1− γ. (2.74)

Then

Pr(C) = Pr(C|X) Pr(X) + Pr(C|X{) Pr(X{) (2.75a)

= γ · x+ (1− γ)(1− x) (2.75b)

= 1− γ − x+ 2γx. (2.75c)

A similar expression holds for Pr(T ).
Observe, we want to find

P (X|T ∩ C) =??? (2.76)

We need to find Pr(X ∩ T ∩ C) and Pr(T ∩ C). Since T and C are independent
(“no collusion”), we have

Pr(T ∩ C) = Pr(T ) Pr(C) (2.77)

and similarly

Pr(X ∩ T ∩ C) = Pr
(
(X ∩ T ) ∩ (X ∩ C)

)
= Pr(X ∩ T ) Pr(X ∩ C).

(2.78)

which implies

Pr(X|T ∩ C) =
Pr(X ∩ T ) Pr(X ∩ C)

Pr(T ) Pr(C)
= Pr(X|T ) Pr(X|C). (2.79)

Wonderful.
We have to find Pr(X|C). We see

Pr(X|C) =
Pr(X ∩ C)

Pr(C)
(2.80a)

by definition, and
Pr(X ∩ C) = Pr(C|X) Pr(X) = γx. (2.80b)

Thus we have
Pr(X|C) =

γx

1− γ − x+ 2γx
(2.80c)

which is one part of the puzzle. (A similar expression holds for Tisias.)
We conclude by writing the entire probability out

Pr(X|C ∩ T ) = Pr(X|C) Pr(X|T )

=
γx

1− γ − x+ 2γx
· τx

1− τ − x+ 2τx

(2.81)
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which is completely different than the expected solution!
So, if γ = τ = 9/10 and x = 1/1000, then

Pr(X|C ∩ T ) =

(
9

1017

)2

≈ 0.00007831466. (2.82)

But, on the other hand, the probability that Corax would say X has happened
would be

Pr(C) =
1017

104
= 0.1017, (2.83)

which is astoundingly high. The moral of this story is: don’t go to court.

Alternate Solution: It would actually be easier to write up the σ-algebra. We
will write the elements of the sample space as triples (a, b, c) where a is 1 if X
occurs, 0 otherwise; b is 1 if Tisias asserts X occurred, 0 otherwise; c is 1 if Corax
asserts X has occurred, 0 otherwise. So Ω = Z2

3. Then the relevant events are

X = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} (2.84a)

C = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)} (2.84b)

T = {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}. (2.84c)

We find, moreover, that

Pr(C) = (1− x)τ(1− γ) + (1− x)(1− τ)(1− γ) + x(1− τ)γ + xτγ

= γ
(2.85)

which we expect. We also find

Pr(C ∩ T ) = (1− x)(1− γ)(1− τ) + xγτ

= 1− x− γ − τ + xγ + xτ + γτ.
(2.86)

We then find
Pr(X ∩ T ∩ C) = xγτ (2.87)

and thus
Pr(X|C ∩ T ) =

xγτ

1− x− γ − τ + xγ + xτ + γτ
(2.88)

When we set γ = τ = 9/10 and x = 1/1000 we find Pr(X|C ∩ T ) = 81/1080.
Although slim, it’s 75 times greater than if Tisias and Corax said nothing.

2.31. Example. What’s the probability that flipping a coin an infinite number
of times will result in a heads “sooner or later”?

Solution: We begin by considering the events

A1 = H, A2 = TH, A3 = TTH, (2.89)

etc. So An has n− 1 tails followed by a heads. Write A for the event that a heads
turns up “sooner or later”. Then

Pr(A) =

∞∑
n=1

Pr(An). (2.90)

We see that
Pr(A1) = 1/2, (2.91a)
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and
Pr(A2) = 1/4 (2.91b)

or more generally
Pr(An) = 2−n. (2.91c)

Thus we have

Pr(A) =

∞∑
n=1

2−n = 1. (2.92)

So the probability of eventually flipping a heads is 1.

Alternate Solution: Let Bn be the event that we have no heads appear in the
first n trials. Then

B1 ⊇ B2 ⊇ . . . (2.93)

So B1 describes all events starting with 1 tails, B2 all events starting with 2 tails
(which necessarily must include all events starting with 1 tail), and so on.

We use proposition 2.8, let

B =

∞⋂
n=1

Bn (2.94)

then
Pr(B) = lim

n→∞
Pr(Bn). (2.95)

But
Pr(Bn) = 2−n (2.96)

implies
Pr(B) = lim

n→∞
2−n = 0. (2.97)

So the probability a head won’t appear “sooner or later” is 0.

Sample Code. Here’s a simple ANSI C program which will simply flip a coin and
print out the number of tails.

#include <time.h>

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

int n;

// warm up the random number generator

srand(time(NULL));

for(n = 0; n < 100; n++)

rand();

// flip the coin

n = 0;

while (rand() % 2 == 0)

printf("Tail number %d\n",++n);

printf("There were %d tails.\n", n);

return 0;

}
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3 Elements of Combinatorial Analysis

3.1. Probability amounts to calculate

Pr(A) =

(
number of

elements in A

)
|Ω|

. (3.1)

This is both a blessing and a curse: for we change probability into counting, yet
counting can be difficult! We will review elements of combinatorics (“the art of
counting”).

3.1 Permutations

3.2. Suppose we want to consider how many ways we can order n elements. What
to do?

We first say “We have n slots to fill with our n elements.” Then we pick some
element, and note how many possible slots we may choose. We may pick any one
of our n slots. Then pick our second element, and we may place it in any of the
remaining (n− 1) slots. We continue, and there are

n(n− 1)(n− 2)(· · · )(1) = n! (3.2)

different methods of ordering our n elements. Thus there are n! different permuta-
tions.

Convention: We set 0! = 1.

3.3. Factorial grows quite rapidly. For example

3! = 6 (3.3a)

6! = 720 (3.3b)

12! = 479 001 600 (3.3c)

We may approximate it using “Stirling’s Approximation”

n! ∼
√

2πn
(n

e

)n
. (3.4)

We may derive this from the Gamma function

Γ(x) =

∫ ∞
0

tx−1e−t dt, for Re(x) > 0. (3.5)

We take Γ(n+ 1) and integrate by parts n times, we find

Γ(n+ 1) = n! (3.6)

for n ∈ N.
Integrating Γ(x+ 1) by parts merely once will give us the functional equation

Γ(x+ 1) = xΓ(x). (3.7)

Calculus students around the world prove everyday that

Γ(1/2) =
√
π (3.8)

without ever realizing it!
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3.2 Sampling

3.4. Given some collection of elements (or a “population”), we would like to pick a
finite number of elements (a “sample”). A population with n elements {a1, . . . , an},
any ordered arrangement of r symbols aj1 , . . . , ajr is an “Ordered Sample of
Size r” drawn from the population. Note when r = n, an ordered sample is just a
permutation of the population.

Sampling with Replacement: The elements are drawn from the entire popu-
lation, so we may pick the same element twice (or more).

Sampling Without Replacement: Once we choose an element, we cannot pick
it again. We reduce the possible choices, and hence more limited than sampling
with replacement.

Choosing r elements with replacement from a population of n can be done in
nr different ways. The proof is obvious: you have r choices, and each choice has n
possibilities. So there are

n · (· · · ) · n︸ ︷︷ ︸
r times

= nr (3.9)

different ways to sample.
How many different ways can we sample r elements without replacement from

a population with n elements?

3.5. Since ordering matters, we have

n(n− 1)(· · · )
(
n− (r − 1)

)
= (n)r (3.10)

This defines the “Falling Factorial” (n)r.
How can we be certain about this? Well, for the first choice there are n pos-

sibilities. The second has (n − 1) possibilities. The kth has (n − (k − 1)) possible
choices. We then multiply these together to get the result.

3.6. Theorem. For a population with n > 1 elements and a prescribed sample
size r ≤ n, there exists nr different samples with replacement, and (n)r samples
without replacement.

3.7. Birthday Problem. How many people do we need in a room to make a
favorable bet (i.e., a bet with probability of success greater than 1/2) that 2 people
in the room will have the same birthday?

Solution: Let r be the number of people in the room, we want to find it. We
will compute the probability of no repetition in our data (i.e., the probability no
one in the room shares a birthday). The population, for this example, is the 365
days of the year.

Then

pr =
(365)r
365r

(3.11)

describes the probability that no one shares a birthday. We want to find the smallest
r such that pr < 0.5. This can be done by exhaustion, we find

p23 =
36997978566217959340182499134166757044383351847256064

75091883268515350125426207425223147563269805908203125
≈ 0.49270276

(3.12)

So only make this bet when there are at least 23 people in the room!
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3.3 Binomial Coefficients

3.8. How many samples of size r exist in a population of n elements, without
regard to ordering? That is, how many ways can we choose r guys from n elements?
We count this using binomial coefficients(

n

r

)
=

n!

r!(n− r)!
(3.13)

and read it as “n choose r”. Why is this true? Great question: we have (n)r
subpopulations, and r! different orderings of each subpopulation, so we have(

n

r

)
=

(n)r
r!

. (3.14)

But this is precisely what we have written!

Convention. If k ≥ n, then (
n

k

)
= 0. (3.15)

3.9. Theorem. A population with n elements has
(
n
r

)
different subpopulations

of size r ≤ n.

3.10. Theorem (Properties of the Binomial Coefficients). Let 0 ≤ k ≤
n. Then

1.

(
n

0

)
=

(
n

n

)
= 1

2.

(
n

k

)
=

(
n

n− k

)

3. Pascal’s triangle

(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
Proof. (1) We see by definition that(

n

0

)
=

n!

(n− 0)!0!
=
n!

n!
= 1, (3.16a)

and similarly (
n

n

)
=

n!

(n− n)!n!
=
n!

n!
= 1. (3.16b)

That proves (1).
(2) We see that (

n

k

)
=

n!

(n− k)!k!
(3.17a)

and (
n

n− k

)
=

n!(
n− (n− k)

)
!(n− k)!

=
n!

k!(n− k)!
(3.17b)

Then setting equals to equals proves (2).
(3) We recall the generating function for binomial coefficients is given by

(1 + x)n =

n∑
k=0

(
n

k

)
xk, (3.18a)
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so

(1 + x)n+1 =

n+1∑
k=0

(
n+ 1

k

)
xk. (3.18b)

But simple arithmetic also suggests

(1 + x)n(1 + x) = 1 ·
n∑
k=0

(
n

k

)
xk + x

n∑
k=0

(
n

k

)
xk

=

n∑
k=0

(
n

k

)
xk +

n∑
k=0

(
n

k

)
xk+1.

(3.18c)

We can rewrite this as

(1 + x)n(1 + x) = 1 +

n∑
k=1

(
n

k

)
xk +

n∑
k=1

(
n

k − 1

)
xk + xn+1

= 1 +
n∑
k=1

[(
n

k

)
+

(
n

k − 1

)]
xk + xn+1

(3.18d)

and thus we conclude, setting Eq (3.18b) equal to Eq (3.18d), the coefficients of
powers of x must be equal. Thus(

n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
, (3.18e)

which implies (3).

3.10.1. Corollary. Let n, k ∈ N, then(
n

−k

)
= 0. (3.19)

Proof of Corollary. By statement 2 of the previous theorem, we have(
n

−k

)
=

(
n

n+ k

)
(3.20)

Since k > 0, our convention implies that(
n

n+ k

)
= 0 (3.21)

as desired.

x Exercise 1. Prove
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
n

)
= 2n.

3.11. Example. A deck of cards has 52 cards, a poker hand has 5 cards. How
many different poker hands are there?

Solution: We see there are (
52

5

)
= 2 598 960 (3.22)

different poker hands.
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3.12. Example. The US Senate has 100 Senators (a pair represents each state).
If a committee is formed with 50 senators, then:

(a) What’s the probability a given state is represented?
(b) What’s the probability each state is represented?

Solution. (a) Well, we first consider the negation of this statement: what’s the
probability not every state is represented? There are(

98

50

)
= dk (3.23)

ways to choose the committee so some state is not represented. But there is(
100

50

)
= nk (3.24)

different ways to choose the committee. Thus the probability a given state is not
represented is

q =

(
98

50

)
(

100

50

) =
49

198
≈ 0.24747 . . . (3.25)

and hence the probability a given state is represented is

1− q =
149

198
≈ 0.7525 . . . (3.26)

That concludes the first question.
(b) We pick one senator from each state. We have two possibilities for each

state, and 50 states, hence we have 250 possibilities. Thus we have

p =
250(
100

50

) ≈ 1.11× 10−14 (3.27)

is the probability every state is represented.

3.3.1 Binomial Distribution

3.13. Example. Consider a random distribution of r balls in n urns. Find the
probability pk that a specified cell contains exactly k balls.

Solution: We want to find

pk =

Number of ways to
choose k balls from

r balls

 number of ways to
put remaining (r − k) balls

in (n− 1) cells


number of different

ways placing r
balls in n cells

 (3.28)

There are nr different ways placing r balls in n cells. This gives us the denominator.
We see that Number of ways to

choose k balls from
r balls

 =

(
r

k

)
(3.29)
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and what of the remaining (r− k) balls? They can be placed in the remaining cells
in (n− 1)r−k ways. Thus we plug this all back into our equation to find

pk =

(
r

k

)
(n− 1)r−k

nr

=

(
r

k

)
1

nk

(
1− 1

n

)r−k
.

(3.30)

This is an example of the famous binomial distribution Binomial Distribution, which we’ll soon study.

3.14. Example. Suppose we toss a fair coin n times. What’s the probability
we have k heads?

Solution: The basic solution we will propose will look like

Pr(k heads) =

(
number of

combinations

)(
probability of

one heads

)k (
probability of

one tails

)n−k
(3.31)

We have a subpopulation of k heads in a population with n elements. So(
number of

combinations

)
=

(
n

k

)
(3.32)

and (
probability of

one heads

)
=

(
probability of

one tails

)
=

1

2
. (3.33)

More generally, we will write

p =

(
probability of

one heads

)
, and (1− p) =

(
probability of

one tails

)
. (3.34)

So we conclude

Pr(k heads) =

(
n

k

)
pk(1− p)n−k. (3.35)

Solution 2: Let p be the probability of success (heads), and q the probability of
failure (tails), for one trial. Then we consider the Binomial expansion of

(p+ q)n = pn + · · ·+
(
n

k

)
pkqn−k + · · ·+ qn. (3.36)

Each term represents one outcome, namely, the coefficient of pk is the outcome with
k successes. So

Pr(k heads) =

(
n

k

)
pkqn−k. (3.37)

Since the only outcomes are success or failure, we have

p+ q = 1, (3.38)

which implies q = 1− p and “something must happen”. Thus we conclude

Pr(k heads) =

(
n

k

)
pk(1− p)n−k (3.39)

recovering our previous solution.
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3.15. Example. In a ten-question true-false exam, find the probability that a
student gets a grade of 70 percent or better by guessing. Answer the same question
if the test has 30 questions.

Solution: When there are 10 questions, the student needs to answer 7 correctly.
If the student guesses on a true-false exam, the student has a probability of success
p = 1/2. Thus we see

Pr(70% with 10 questions) =

(
10

7

)
2−10 =

15

128
. (3.40)

This is approximately Pr(70% with 10q) ≈ 0.117.
If there were 30 questions, we see

Pr(70% with 30 questions) =

(
30

21

)
2−30

=
3 · 52 · 112 · 13 · 23 · 29

228

(3.41)

which is approximately Pr(70% with 30q) ≈ 0.293.

3.4 Multinomial Coefficient

3.16. Suppose we have a population with n elements. How many different ways
can we partition the population into subpopulations with k1 members, . . . , km
members?

x Exercise 2. Prove that k1 + · · ·+ km = n.
We have the following number of such partitions:(

n

k1, . . . , km

)
= (k1, . . . , km)! =

(k1 + · · ·+ km)!

k1!(. . . )km!
(3.42)

These quantities are called “Multinomial Coefficients”. The notation varies
according to the text.

3.5 Hat Check Problem

3.17. Problem Statement. At a restaurant, n people check their hats. The
hat checker completely loses track of who owns which hat, and begins handing the
hats randomly to the owners. What’s the probability no one receives their hat
back?

3.18. We really want to consider the permutations

σ =

(
1 2 3 . . . n
a1 a2 a3 . . . aN

)
(3.43)

such that there are no fixed points (i.e., ak 6= k for every k).

3.19. Solution. Let Ai be the event the ith element is fixed. Then

A1 ∪A2 ∪ . . . An =

event there exists
at least one
fixed point

 (3.44)

then
Pr(no fixed pt) = 1− Pr(A1 ∪A2 ∪ . . . An). (3.45)

We just have to compute Pr(A1∪A2∪. . . An). What to do? Use inclusion-exclusion!
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3.20. So we consider the event Ai. The permutation would look like(
1 2 3 . . . i . . . n

. . . i . . .

)
(3.46)

where the blank entries are arbitrary (we don’t care where they go). How many
different such permutations are there? Well, it’s as though we permute the (n− 1)
elements other than i, so there are (n− 1)! such permutations. The probability of
this event is then

Pr(Ai) =
(n− 1)!

n!
=

1

n
. (3.47)

There are n such events (since we can let i = 1, . . . , n). Thus

n∑
i=1

Pr(Ai) = n · 1

n
= 1. (3.48)

Wonderful.

3.21. Consider the event Ai ∩Aj , which has the permutation(
1 2 . . . i . . . j . . . n

. . . i . . . j . . .

)
(3.49)

How many such permutations are there? Well, we fix two points while permuting
the others, so there are (n− 2)! such permutations. Thus the probability is

Pr(Ai ∩Aj) =
(n− 2)!

n!
=

1

n(n− 1)
(3.50)

How many such “fix two point” events are there? It’s simply(
n

2

)
=
n(n− 1)

2
(3.51)

thus ∑
1≤i<j≤n

Pr(Ai ∩Aj) =
n(n− 1)

2
· 1

n(n− 1)
=

1

2
. (3.52)

This will be our second term.

3.22. Consider the event Ai ∩Aj ∩Ak. We see

Pr(Ai ∩Aj ∩Ak) =
(n− 3)!

n!
=

1

n(n− 1)(n− 2)
. (3.53)

There are
(
n
3

)
such terms. Thus∑

1≤i<j<k≤n

Pr(Ai ∩Aj ∩Ak) =
1

3!
(3.54)

and inductively we find

Pr(A1 ∩ · · · ∩An) =
1

n!
(3.55)

Thus

Pr(no fixed pt) =
1

2
− 1

3!
+

1

4!
+ · · ·+ (−1)n

n!
(3.56)
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We should note the Taylor series for ex is

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ . . . (3.57)

so

e−1 = 1− 1 +
(−1)2

2!
+ · · ·+ (−1)n

n!
+ . . . (3.58)

implies
Pr(no fixed pt)→ e−1 (3.59)

as n→∞.
We will construct a table, let pn be the probability there are no fixed points

among permutations of n elements. Then:

p2 =
1

2
≈ 0.5

p3 =
1

3
≈ 0.33333334

p4 =
3

8
≈ 0.375

p5 =
11

30
≈ 0.36666667

p6 =
53

144
≈ 0.36805555

p7 =
103

280
≈ 0.36785713

p8 =
2119

5760
≈ 0.36788195

p9 =
16687

45360
≈ 0.36787918

(3.60)

We should note that 1/e ≈ 0.36787944117144233, so we are getting a decent ap-
proximation with n = 8 (five digits!).

3.6 Hypergeometric Distribution

3.23. The “Hypergeometric Distribution” occurs in situations like:

Suppose we have N balls, of which k are red and N − k are blue. We
draw a sample, without replacement, of n balls. Let X be the number of
red balls drawn in our sample of size n. What’s the probability X = x?

We see

Pr(X = x) =

number of different
ways to choose
x red balls

number of different
ways to choose

(n− x) blue balls


(

number of different
samples drawn

) (3.61)

3.24. Example. We have 1000 widgets, of which an unknown number D has
defects. A sample of 100 has 2 with defects. The “Maximum Likelihood Esti-
mate” for D is the number which gives the highest probability for obtaining the
number of defectives observed in a sample. Find that value of D.
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Solution: So we have N = 1000 and instead of “red balls” we have “defective
Widgets” k = D. The sample size is n = 100. What’s the value of D that makes
the event most probable?

Well, the distribution would be described by

Pr(X = 2) =

(
D
2

)(
1000−D
100−2

)(
1000
100

) (3.62)

which algebraically reduces to

Pr(X = 2) =
D(D − 1)

2

1

100 · 999 · (. . . ) · (1000− (D − 1))

900 · (. . . ) · (902− (D − 1))

1
·100·99.

(3.63)
We can then write up a small C program which will write out a table for values of
D and the corresponding probability.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <math.h>

4

5 #define E 2.71828182845904523536028747135266249775724709369995L

6 #define PI 3.14159265358979323846264338327950288L

7

8 /* Stirling ’s approximation */

9 double factorial(int n)

10 {

11 double x = 1.0L*n;

12 return sqrt (2*PI*x)*pow(x/E,x);

13 }

14

15 /* return a*(a+1) *(...)*b */

16 double prod(int a, int b)

17 {

18 if(a>b) return prod(b,a);

19 int k;

20 double result;

21 result = 1.0;

22 for(k=a;k<=b;k++)

23 result = result*k;

24 return result;

25 }

26

27 int main(int argc , char *argv [])

28 {

29 int D;

30 double c, v;

31 v = 0.0;

32 c = 990.0;

33 for(D=2; 35>D; D++)

34 {

35 v = c * (D*(D-1) *0.5) * prod (902-D+1 ,900)/prod (1000-D+1 ,1000);

36 printf("D=%d, Pr(X=2) = %f\n",D,v);

37 }

38

39 return EXIT_SUCCESS;

40 }

A small snippet reveals:

D=19, Pr(X=2) = 0.028804

D=20, Pr(X=2) = 0.028807

D=21, Pr(X=2) = 0.028655

D=22, Pr(X=2) = 0.028366

D=23, Pr(X=2) = 0.027954
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which implies D = 20 is the value which has the most probable outcome.

3.25. Example. On an Island, 50 moose are captured and tagged. Six months
later, 200 moose are captured, of which 8 are tagged. Estimate the number of
moose on the Island.

Solution: So, this is a hypergeometric distribution, where the “red balls” are the
tagged moose, we have a sample of 200 without replacement, and 8 of them are
tagged. So we are trying to maximize the function

h(N, 50, 200, 8) =

(
50
8

)(
N−50
200−8

)(
N

200

) (3.64)

by picking some N . After some algebra, we can rewrite this as

h(N, 50, 200, 8) =
50!

42!

1

8!

200!

192!

(N − 50)!

N !

(N − 200)!

(N − 242)!

= C
(N − 50)!

N !

(N − 200)!

(N − 242)!

(3.65)

where C = 1192725059258223539848800000. We have N ≥ 242. We write up a
small program, listed below, to write out a table of probabilities. It’s maximized
when N = 1250.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <math.h>

4

5 /* return a*(a+1) *(...)*b */

6 long double prod(int a, int b)

7 {

8 if(a>b) return prod(b,a);

9 int k;

10 long double result;

11 result = 1.0;

12 for(k=a;k<=b;k++)

13 result = result*k;

14 return result;

15 }

16

17 int main(int argc , char *argv [])

18 {

19 int N;

20 long double c, v;

21 v = 0.0;

22 c = 1192725059258223539848800000.0L;

23 for(N=1242; 1260>N; N++)

24 {

25 v = c * prod(N-200,N-241)/prod(N-49,N);

26 printf("N=%d, h(N,50 ,200 ,8) = %Lf\n",N,v);

27 }

28

29 return EXIT_SUCCESS;

30 }

3.26. Example. Suppose that in a bushel of 550 apples there are 2% rotten
ones. What is the probability that a random sample of 25 apples contains two
rotten apples? Hint: Hypergeometric distribution.
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Solution: So, we have N = 550 apples, of which k = 11 are rotten. So we pick
a sample n = 25. What’s the probability x = 2 are rotten? It’s given by

Pr(2 rotten) =

(
11
2

)(
539
23

)(
550
25

) (3.66)

We can compute this by hand, finding

Pr(2 rotten) =
599494391824595575

8092091399320955412
≈ 0.074083986

(3.67)

so the probability is roughly 7.4%.

4 Partial Summation: A Useful Tool

4.1. Definition. Let x ∈ R be any real number. We define [x] to be the
greatest integer smaller than x. So observe

[3.1] = 3 (4.1a)

[π] = 3 (4.1b)

[−e] = −3 (4.1c)

We always will have
[x] ≤ x. (4.2)

We now may define

{x} = x− [x] = fractional part of x (4.3)

and observe 0 ≤ {x} < 1.

4.2. Lemma. Suppose we have a sequence {cn}∞n=1 and for x ≥ 1 we define a
function

C(x) =
∑
n≤x

cn, and C(0) = 0. (4.4)

Let f be a C1 function, then∑
n≤x

cnf(n) = C(x)f(x)−
∫ x

1

C(t)f ′(t) dt. (4.5)

Proof. This is a two-step proof. Step one notes∑
n≤x

C(n)
(
f(n+ 1)− f(n)

)
= C(x)f([x])−

∑
n≤x

cnf(n) (4.6a)

but the left hand side is precisely

∑
n≤x

C(n)
(
f(n+ 1)− f(n)

)
=

∫ [x]

1

C(t)f ′(t) dt. (4.6b)

Thus we obtain ∫ [x]

1

C(t)f ′(t) dt = C(x)f([x])−
∑
n≤x

cnf(n). (4.6c)
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That concludes the first step.
The second step notes∫ x

[x]

C(t)f ′(t) dt = C(x)f(x)− C(x)f([x]). (4.7)

This uncontroversial statement should be seen immediately by the fundamental
theorem of calculus.

We then add Eq (4.6c) to Eq (4.7) to find∫ x

[x]

C(t)f ′(t) dt+

∫ [x]

1

C(t)f ′(t) dt

= C(x)f(x)− C(x)f([x]) + C(x)f([x])−
∑
n≤x

cnf(n) (4.8a)

which simplifies to ∫ x

1

C(t)f ′(t) dt = C(x)f(x) +
∑
n≤x

cnf(n) (4.8b)

precisely as desired.

4.3. Example (Harmonic Series). We will apply our lemma to the harmonic
series. How? Well, consider

Hx =
∑
n≤x

1

n
(4.9)

which we consider the sequence cn = 1 and f(t) = 1/t. Then note

C(x) =
∑
n≤x

1 = [x] . (4.10)

Thus our lemma implies

Hx =
[x]

x
+

∫ x

1

[t]

t2
dt. (4.11)

We will try to simplify this.
First we should note that x = [x]+ {x}. Thus

Hx =
x− {x}

x
+

∫ x

1

t− {t}
t2

dt (4.12a)

= ln(x) +

(
1− {x}

x

)
−
∫ x

1

{t}
t2

dt (4.12b)

= ln(x) +

(
1−

∫ ∞
1

{t}
t2

dt

)
+

∫ ∞
x

{t}
t2

dt− {x}
x

(4.12c)

Let

γ = 1−
∫ ∞

1

{t}
t2

dt (4.13)

then our expression simplifies to

Hx = ln(x) + γ +

∫ ∞
x

{t}
t2

dt− {x}
x
. (4.14)

Wonderful.
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But does the integral term converge? We see∣∣∣∣∫ ∞
x

{t}
t2

dt

∣∣∣∣ ≤ ∫ ∞
x

| {t} |
t2

dt (4.15a)

≤
∫ ∞
x

1

t2
dt =

1

x
. (4.15b)

Moreover this implies ∫ ∞
x

{t}
t2

dt− {x}
x

= O(x−1). (4.16)

So the expression for Hx becomes

Hx = ln(x) + γ +O(x−1) (4.17)

but can we do better?

4.4. Lets try to figure out the next terms to order O(x−2). We will consider∫ ∞
x

{t}
t2

dt− {x}
x

=

∫ ∞
x

{t}− 1
2

t2
dt+

1

2

∫ ∞
x

dt

t2
− {x}

x
(4.18)

which simplifies to∫ ∞
x

{t}
t2

dt− {x}
x

=

∫ ∞
x

{t}− 1
2

t2
dt+

1

2x
− {x}

x
. (4.19)

Now we make a claim!

Claim. The integral

∫ ∞
x

{t}− 1
2

t2
dt = O(1/x2).

Proof. We will integrate by parts, using

u =
1

t2
, and du =

−2

t3
dt (4.20)

and

dv =

(
1

2
− {t}

)
dt, and v =

∫ t

1

(
1

2
− {u}

)
du. (4.21)

Thus the integral becomes

lim
R→∞

∫ R

x

{t}− 1
2

t2
dt

=
1

t2

∫ t

1

(
1

2
− {u}

)
du

∣∣∣∣t=R
t=x

+ 2

∫ R

x

1

t3

∫ t

1

(
1

2
− {u}

)
du (4.22)

We claim that

v =

∫ [t]

1

(
1

2
− {u}

)
du+

∫ t

[t]

(
1

2
− {u}

)
du

= 0 +

∫ t

[t]

(
1

2
− {u}

)
du

(4.23)

How can we see this? Well, we should note for any integer k that∫ k+1

k

(
1

2
− {u}

)
du = 0, (4.24)
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since it’s a sawtooth function. Thus

v ≤
∫ 1

1/2

(
1

2
− {u}

)
du =

1

4
. (4.25)

Our integral becomes

lim
R→∞

∫ R

x

{t}− 1
2

t2
dt = lim

R→∞

1

t2
1

4

∣∣∣∣t=R
t=x

+ 2

∫ R

x

1

t3
1

4
dt

∼ O(x−2).

(4.26)

This proves the claim.

Moreover, for any integer n, we see

N∑
n=1

1

n
= ln(N) + γ +

1

2N
+O(N−2). (4.27)

This turns out to be a good asymptotic approximation for harmonic numbers.

5 Random Variables

5.1. In an election, 50 people vote. We describe all the outcomes in a sample
space Ω, but don’t we have a valid question “How many voted ‘yes’?”?

How can we answer such a question? Count the number of ‘yes’-es! This is
done with a map

Y : Ω→ N0. (5.1)

But what is this mapping? The number of ‘yes’-es, which depends on the event.
It’s a random variable!

Note that we can extend the codomain from N0 to Z, Q, or R. For the sake of
generality5, we will consider R.

5.2. Definition. Let (Ω,F ,Pr) be a probability space. We define a “Random
Variable” to be a function W : Ω→ R such that for each x ∈ R we have the set

X = {ω ∈ Ω : W (ω) ≤ x} (5.2)

be an element of F , or in symbols X ∈ F .

5.2.1. Remark. We will consider the simpler case of “Discrete Random Vari-
ables” X : Ω→ Z.

The really critical theoretic property for random variables X is for any interval
B ⊆ R, we have a set of outcomes

{ω ∈ Ω : X(ω) ∈ B} (5.3)

(denoted X ∈ B) which lives in the σ-algebra. Studying Pr(X ∈ B) will become
increasingly relevant.

5.3. Examples. Lets give a grocery list of examples.

1. Toss a coin N times, let H be the number of heads.

2. Choose a random point on Rn, let D be the distance from the point to the
origin.

5We can sometimes include +∞, or −∞, if necessary.
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3. Take a random person from a class, let X be the student’s height.

4. Let W be the value of the DOW stock index at closing.

5.4. A discrete random variable has countably many values {xi ∈ R : i ∈ I ⊆ Z}.
We take the convention that its codomain is a subdomain of Z. Let X be a discrete
random variable, then its “Probability Mass Function” p(xi) := Pr(X = xi).

5.5. Proposition. A probability mass function p satisfies:

1. For any i, p(xi) > 0

2. For any interval B, Pr(X ∈ B) =
∑
xi∈B p(xi)

3. We have
∑
i p(xi) = 1.

5.6. Example. Let X be the number of heads in 2 fair coin tosses. What is its
probability mass function?

Solution: We see there are three outcomes: 0, 1, 2. We also see that Pr(X =
0) = 1/4 and Pr(X = 2) = 1/4. Thus Pr(X = 1) = 1/2. This gives us the
probability mass function.

5.7. Example. An urn contains 20 slips of paper numbered 1, . . . , 20. We
select 5 at random, without replacement. Let X be the random variable describing
the greatest value of the 5 slips selected.

(a) Determine the probability mass function for X.
(b) What’s the probability at least one of the slips selected is 15 or greater?

Solution. Well, X takes the values 5, . . . , 20. There are
(

20
5

)
different outcomes.

So we see

Pr(X ≤ k) =

(
k
5

)(
20
5

) . (5.4)

Thus
p(k) = Pr(X ≤ k)− Pr(X ≤ k − 1) (5.5)

and using Pascal’s triangle (theorem 3.10), we have

p(k) =

(
k
5

)
−
(
k−1

5

)(
20
5

)
=

(
k−1

4

)(
20
5

) (5.6)

This gives us the probability mass function.
(b) The probability one of the slips is 15 or greater can be calculated using

Pr(X ≥ 15) =

20∑
k=15

p(k). (5.7)

Equivalently, we can calculate it as

Pr(X ≥ 15) = 1− Pr(X ≤ 14) =
715

15504
≈ 0.046117

(5.8)

or less than a 1/20 probability.
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5.8. Definition. Let X be a discrete random variable taking values x1, x2, . . . .
Then the “Expected Value” (also called the average or mean or expectation) for
X is

E[X] =
∑
i

xi Pr(X = xi). (5.9)

We also have, for any function g : R→ R,

E[g] =
∑
i

g(xi) Pr(X = xi). (5.10)

5.9. Example. Let X be a random variable such that Pr(X = 1) = 0.2,
Pr(X = 2) = 0.3 and Pr(X = 3) = 0.5. What’s the expected value of X?

Solution: We find, using our definition,

E[X] = 1 Pr(X = 1) + 2 Pr(X = 2) + 3 Pr(X = 3) (5.11)

and this becomes

E[X] = 1 · 0.2 + 2 · 0.3 + 3 · 0.5
= 0.2 + 0.6 + 1.5 = 2.3.

(5.12)

That concludes our example.

5.10. Given some discrete random variable X and its expected value µ = E[X],
how can we measure the “spread” of (the probability mass function for) X? The
näıve solution would use E|X − µ|, but this is bad since we should avoid absolute
values.

So we define the “Variance” of X as

Var(X) = E(X − µ)2. (5.13)

Notice this intuitively measures the sum of the “distance squared” of the values
xi from the expected value µ. This has the “wrong units” (distance squared as
opposed to distance). So we just take the square root, and we obtain the “Standard
Deviation”

σ(X) =
√

Var(X) =
√

E(X − µ)2. (5.14)

5.11. Proposition. The expected value is linear, i.e., given random variables
X and Y and any coefficients c1, c2 we have

E[c1X + c2Y ] = c1E[X] + c2E[Y ]. (5.15)

5.12. Also note that

Var(X) = E[(X − µ)2] (5.16a)

= E[X2 − 2µX + µ2] (5.16b)

= E[X2]− 2µE[X] + µ2 (5.16c)

= E[X2]− 2µ2 + µ2 = E[X2]− (E[X])2. (5.16d)

This gives us another intuition for variance!
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5.13. A “Uniform Discrete Random Variable” is a random variable taking
values x1, x2, . . . , xn each with equal probability 1/n. Such a random variable
simply takes a random choice among n numbers. Note that

E[X] =
x1 + · · ·+ xn

n
(5.17a)

and

Var[X] =
x2

1 + · · ·+ x2
n

n
−
(
x1 + · · ·+ xn

n

)2

. (5.17b)

5.14. Example. Let X be the number shown on a rolled fair die. What’s E[X]
and Var(X)?

Solution: We find

E[X] =
1 + 2 + · · ·+ 6

6

=
1

6

(
6(7)

2

)
=

7

2
,

(5.18)

and

E[X2] =
1 + 22 + · · ·+ 62

6
=

91

6
(5.19)

which then implies

Var(X) =
91

6
−
(

7

2

)2

=
91

6
− 49

4
=

70

24
=

35

12

(5.20)

5.1 Bernoull Random Variable

5.15. Let A be an event with probability p = Pr(A). We have an “Indicator
Function” for A be a function defined as

IA(x) =

{
1 if x ∈ A
0 otherwise

(5.21)

Note IA is a random variable, since it’s a function from Ω→ R.

Claim: E[IA] = p. Really? Well, observe

E[IA] = IA(A) Pr(A) + IA(A{) Pr(A{)

= 1 · p+ 0 · (1− p) = p.
(5.22)

What is its variance? We see

E[I2
A] = 12 Pr(A) + 02 Pr(A{) = p, (5.23)

thus
Var(IA) = p− p2 = p(1− p). (5.24)

5.16. Now, recall the “inclusion-exclusion” property for probability suggests

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B) (5.25)
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which can be derived using expectation values of Bernoulli random variables. Recall

IA + IA{ = 1 (5.26)

where we abuse notation and write 1 for the constant function IΩ. Now, we also
see

IA∩B(x) =

{
1 if x ∈ A and x ∈ B
0 otherwise

(5.27)

thus
IA∩B = IAIB . (5.28)

Great.
We now want to consider IA∪B in terms of IA, IB , and IA∩B . Observe

IA∪B = 1− I(A∪B){ = 1− IA{∩B{ (5.29)

replacing IA{∩B{ with the product of indicator functions gives us

IA∪B = 1− IA{IB{ . (5.30)

Using the fact IA{ = 1− IA, we have

IA∪B = 1− (1− IA)(1− IB). (5.31)

Using basic algebra, expanding out the right hand side, we find

IA∪B = IA + IB − IA∩B . (5.32)

Now, we take expectation values to find

Pr(A ∪B) = E(IA∪B) = E[IA] + E[IB ]− E[IA∩B ]

= Pr(A) + Pr(B)− Pr(A ∩B).
(5.33)

This gives us an alternate proof of the inclusion-exclusion principle.

5.17. Hat Checker Problem Redux. We can use indicator functions to solve
the hat checker problem, which we introduced in subsection 3.5. Let π be a per-
mutation of n elements, we want to find the number of fixed points. Let

X(σ) = number of fixed points of σ. (5.34)

We introduce the indicator function

Ii(π) =

{
1 if i is a fixed point of π

0 otherwise
(5.35)

We now fix a number r such that 0 ≤ r ≤ n− 2. Why n− 2? We want to sum over
the permutations which do not fix all the points. If we fix n − 1 points, then we
fix all the points (think about it: if we give n − 1 people their hats correctly, the
remaining hat must belong to the remaining person!).

So we now set

Sr =
∑
π∈Sn

Ij1(. . . )Ijr (1− Ikr+1)(. . . )(1− Ikn) (5.36)

where we sum over all permutations. Observe there are n! terms in the sum.
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If X(σ) 6= r, we claim Sr = 0. Why? Well, if X(σ) > r, then one of the (1−Ik∗)
factors vanishes in every term. If X(σ) < r, then one of the Ij∗ factors vanishes in
every term.

How many different scenarios do we have X(σ) = r? There are r! different ways
to have fixed points, and (n − r)! different ways to permute the non-fixed points.
Thus

Sr = r!(n− r)! (5.37)

as desired. So

Sr(σ) =

{
r!(n− r)! if X(σ) = r

0 otherwise
(5.38)

Thus we can construct an indicator function

Ir =
Sr

r!(n− r)!
(5.39)

which tells us if a permutation has r fixed points.

Puzzle: What’s E[Ir]?

Using linearity, we have

E[Ir] =
1

r!(n− r)!
E[Sr], (5.40)

and we need to compute E[Sr]. We find

E[Sr] = E

(∑
π

Ij1(. . . )Ijr (1− Ikr+1
)(. . . )(1− Ikn)

)
(5.41)

then we expand the (1− Ik∗) factors

E[Sr] = E

(∑
π

Ij1(. . . )Ijr ×
[
1− (Ikr+1Ikr+2 + · · ·+ Ikn−1Ikn)

+ (. . . ) + (−1)n−rIkr+1
(. . . )Ikn

])
(5.42)

Now, we claim that

E[Ij1(. . . )IjrIkr+s ] = E[Ij1(. . . )IjrIkr+1 ] (5.43)

for s = 1, . . . , n− r. This means our sum becomes

E[Sr] =
∑
π

n−r∑
s=0

(−1)s
(
n− r
s

)
E[Ij1(. . . )IjrIkr+1

(. . . )Ikr+s
] (5.44)

where 0 ≤ s ≤ n− r. So we see

E[Ij1(. . . )IjrIkr+1(. . . )Ikr+s ] =
(n− r − s)!

n!
(5.45)

as there are n! permutations with only (n − r − s)! permutations fixing the given
entries.
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Now, we combine everything together, and find

E[Ir] =
1

r!(n− r)!
E[Sr] (5.46a)

=
1

r!(n− r)!
∑
π

n−r∑
s=0

(−1)s
(
n− r
s

)
(n− r − s)!

n!
(5.46b)

=
1

r!(n− r)!
n!

n−r∑
s=0

(−1)s
(
n− r
s

)
(n− r − s)!

n!
(5.46c)

=
1

r!

n−r∑
s=0

(−1)s

s!
(5.46d)

So, summarizing the main conclusion, the probability that a random permutations
has exactly r fixed points is given by

Pr(X = r) =
1

r!

(
1

2!
− 1

3!
+ · · ·+ (−1)n−r

(n− r)!

)
. (5.47)

This holds for 0 ≤ r ≤ n− 2. For r = 0, this converges quickly to the value

1

e
= 0.367879441171 . . . (5.48)

We have thus derived another solution to the hat check problem using Bernoulli
random variables.

5.2 Poisson Distribution

5.18. Derivation. Consider the binomial distribution

b(n, p) =

(
n

k

)
pk(1− p)n−k. (5.49)

We take λ = np to be the “intensity”. Then we can re-write the distribution as

b(n, p) =
n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
(5.50a)

=

[
n− (k − 1)

n
(· · · )n− (k − k)

n

]
λk

k!

(
1− λ

n

)n [(
1− λ

n

)−k]
(5.50b)

=

[(
1− (k − 1)

n

)
(· · · )

(
1− (k − k)

n

)]
× λk

k!

(
1− λ

n

)n [(
1− λ

n

)−k]
. (5.50c)

Now we take the limit n→∞ while fixing k:

lim
n→∞

b(n, p) = lim
n→∞

[(
1− (k − 1)

n

)
(· · · )

(
1− (k − k)

n

)]
λk

k!

(
1− λ

n

)n [(
1− λ

n

)−k]

= [1]
λk

k!
e−λ[1]. (5.51)

This gives us the “Poisson distribution” Poisson distribution

f(k, λ) =
λk

k!
e−λ. (5.52)

x Exercise 3. Consider the sample space Ω = N0 obtained by the Poisson process.
Calculate Pr(Ω).
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Solution: We see that

Pr(Ω) =

∞∑
k=0

e−λλk

k!
(5.53)

but we can rearrange factors, and find

Pr(Ω) = e−λ
∞∑
k=0

λk

k!
= e−λeλ = 1. (5.54)

Thus, in the f(k, λ), the factor e−λ is a normalization constant.

5.19. Interpretation. We interpret λ as the number of events in some unit of
time. The parameter k indicates the number of events we wonder about (i.e., we
ask “What’s the probability k events will happen?”).

5.20. Example. Airlines find that passangers who make reservations fail to
appear with probability 1/10, independent of other passangers. Acme Airlines sell
10 tickets for their 9 seat airplane, and 20 tickets for their 18 seat plane. Which
plane is often over-booked?

Solution One: Lets write

f(n, k) =

(
n

k

)(
1

10

)k (
1− 1

10

)n−k
(5.55)

for the probability k people with reservations don’t appear. We see the probability
the smaller plane is overbooked occurs only when all 10 people appear, which has
probability

f(10, 0) =

(
9

10

)10

= 0.3486784401. (5.56)

The larger plane is overbooked when 19 or 20 people appear, which occurs with
probability

f(20, 0) + f(20, 1) = 20
1

10

(
9

10

)19

+

(
9

10

)20

= 0.39174699812516770581.

(5.57)

We see the larger plane gets overbooked a tad more often than the smaller plane.

Solution Two: Using the Poisson distribution, we will count the number of
passangers that are absent as the “intensity”. So λs = n · 1/10 or λs = 1. We see

Poi(k, λs) =
e−1

k!
(5.58)

and we get overbooked for

Poi(0, λs) = e−1 ≈ 0.36787944 (5.59)

which is within 2% of Eq (5.56).
But for the larger plane, we see λl = 2 is the intensity of absent people, so

Poi(0, λl) = e−2 (5.60a)

and
Poi(1, λl) = 2e−2 (5.60b)

thus
Poi(19, λl) + Poi(20, λl) = 3e−2 ≈ 0.4060058 (5.60c)

which is within 1.5% of Eq (5.57). We see these approximations are quite good!
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5.3 Expected Values

5.21. If we have a discrete random variable X : Ω → R, we can ask what’s its
expected value? What does this mean? We mean, if X = xj for j ∈ N, we want to
consider the expression

E[X] =
∑
j∈N

xj Pr(X = xj). (5.61)

The intuition is that

E[X] =
1

N(Ω)

∑
j∈N

xjN(xj) (5.62)

which is precisely what we have.

5.22. Example. Recall Example 3.15 when a student guesses on a true-false
exam. What’s the expected value of a student guessing on a 10 question true-false
exam?

Solution: We see that

E[X] =

10∑
n=0

n ·
(

10

n

)
2−10 (5.63)

We recall

(1 + x)n =

n∑
k=0

(
n

k

)
xk (5.64)

thus taking its derivative gives us

n(1 + x)n−1 =

n∑
k=0

k

(
n

k

)
xk−1. (5.65)

We set x = 1 and obtain

n2n−1 =

n∑
k=0

k

(
n

k

)
. (5.66)

We thus deduce
E[X] = 2−10 · 10 · 29 = 5. (5.67)

An anticlimactic solution: guessing should give a score of 50%.

5.23. Theorem. The expectation operator satisfies the following properties:

1. If X ≥ 0, then E[X] ≥ 0

2. For any a, b ∈ R we have E[aX + bY ] = aE[X] + bE[Y ]

3. The random variable 1 which takes the constant value 1 satisfies E[1] = 1.

Proof. (1) We see that if X takes values xj ≥ 0, then Pr(X = xj) ≥ 0, and the
product of two positive real numbers is positive. The sum of positive real numbers
is itself a positive real number.

(2) Linearity follows immediately:

E[aX + bY ] =
∑
ω

aωPr(X = ω) + bωPr(Y = ω) (5.68a)

=
∑
x

axPr(X = x) +
∑
y

byPr(Y = y) (5.68b)

= a
∑
x

xPr(X = x) + b
∑
y

yPr(Y = y) = aE[X] + bE[Y ]. (5.68c)

(3) Obvious, since it becomes a sum of probabilities which must be unity.
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5.4 Joint Distributions

5.24. Definition. Let X, Y be discrete random variables. Their “Joint Dis-
tribution” F : R2 → [0, 1] is given by

F (x, y) = Pr(X ≤ x, Y ≤ y) (5.69)

and their “Joint Mass Function” is

f(x, y) = Pr(X = x, Y = y). (5.70)

We sometimes use the notation fX,Y (x, y) to make it clear what the random vari-
ables are.

5.25. Definition. We see that X and Y are “Independent” if and only if

fX,Y (x, y) = Pr(X = x, Y = y) (5.71a)

= Pr(X = x) Pr(Y = y) (5.71b)

= fX(x)fY (y) (5.71c)

Note we induce this notion using the usual notion of independence.

5.26. Definition. We have the “Covariance” of X and Y be

Cov(X,Y ) = E[XY ]− E[X]E[Y ] (5.72)

and the “Correlation Coefficient”

ρ(X,Y ) =
Cov(X,Y )√

Var(X) Var(Y )
(5.73)

Recall we defined the variance Var(X) in (§5.10).

5.27. Lemma (Independence Condition). Let X, Y be random variables. They
are independent if and only if

Cov(X,Y ) = 0. (5.74)

Proof. We see that

E[XY ]− E[X]E[Y ] =
∑
x,y

xyPr(X = x, Y = y)− xPr(X = x)yPr(Y = y)

=
∑
x,y

xy
(
Pr(X = x, Y = y)− Pr(X = x) Pr(Y = y)

) (5.75)

but we see independence for joint distributions precisely occurs when(
Pr(X = x, Y = y)− Pr(X = x) Pr(Y = y)

)
= 0 (5.76)

for any x and y.

5.28. Theorem (Cauchy-Schwarz Inequality). Let X, Y be random variables.
Then (

E[XY ]
)2 ≤ E[X2]E[Y 2] (5.77)

with equality if and only if Pr(aX = bY ) = 1 for some a, b ∈ R (at least one of
which is nonzero).
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Proof. We introduce a new random variable

Z = aX + bY (5.78)

where a, b ∈ R. Suppose a ≥ 0. Then

0 ≤ E[Z2] = a2E[X2] + b2E[Y 2]− 2abEXY . (5.79)

We consider the right hand side as a quadratic function in a. When does it have a
real root? When

B2 − 4AC ≤ 0 (5.80a)

or for us
4b2E[XY ]2 − 4E[X2] · b2E[Y 2] ≤ 0 (5.80b)

For nonzero b, we have the desired result immediately.
Observe one real root of Eq (5.80) implies

E[Z2] = 0 (5.81a)

which implies
Z = 0 with probability 1. (5.81b)

Thus
aX − bY = 0 (5.81c)

with probability 1.

5.5 Conditional Distributions and Expectations

Let X and Y be two discrete random variables on (Ω,F ,Pr).

5.29. Definition. The “Conditional Distribution Function” of Y given
X = x, written FY |X(−|x), is defined by

FY |X(y|x) = Pr(y ≤ Y |X = x) (5.82)

for any x such that Pr(X = x) > 0.
The “Conditional Probability Function” (or “Conditional Mass Function”)

of Y given X = x, written fY |X(−|x), is defined as

fY |X(y|x) = Pr(Y = y|X = x) (5.83)

5.29.1. Remark. Note this definition implies

fY |X =
fY,X
fX

(5.84)

and that X and Y are independent if and only if

fY |X = fY . (5.85)

This justifies the choice of notation.

5.29.2. Remark. Given X = x, we may “define”

E[Y |X = x]
def
=
∑
y

yfY |X(y|x)

= conditional expectation of Y given (X = x)

(5.86)
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We may think of this as a function of x:

ψ(x) = E[Y |X = x]. (5.87)

Thus the expected value may be thought of as a function of X:

ψ(X) = E[Y |X]. (5.88)

This is a mildly sloppy abuse of notation.

5.30. Definition. Let ψ(x) = E[Y |X = x]. Then the “Conditional Expec-
tation” of Y given X written E[Y |X] is precisely ψ(X). Note that E[Y |X] is a
random variable.

5.31. Theorem. Given random variables X, Y as specified, then

E
[
E[Y |X]

]
= E[Y ]. (5.89)

Proof. This is a classic “follow-your-nose and unravel the definitions” type proof.

E
[
E[Y |X]

]
=
∑
x

fX(x)

(∑
y

yfY |X(y|x)

)
(5.90a)

=
∑
y

y
∑
x

fX,Y (x, y) (5.90b)

=
∑
y

yfY (y) = E[Y ]. (5.90c)

We just began with Eq (5.86) and “followed our nose”!

Note more generally, we have

E
[
E[Y |X]g(X)

]
= E[Y g(X)]. (5.91)

The proof is simple:

E
[
ψ(x)g(x)

]
=
∑
x

ψ(x)g(x) Pr(X = x) (5.92a)

=
∑
y

y
∑
x

Pr(Y = y|X = x)g(x) Pr(X = x) (5.92b)

=
∑
x,y

yg(x) Pr(X = x, Y = y) = E[Y g(X)]. (5.92c)

5.32. Theorem. Let a, b ∈ R, and X, Y , Z be random variables.

1. E[aY + bZ|X] = aE[Y |X] + bE[Z|X]

2. E[Y |X] ≥ 0 if Y ≥ 0

3. E[1|X] = 1

4. If X and Y are independent, then E[Y |X] = E[Y ]

5. E[Y g(X)|X] = g(X)E[Y |X] where g : R→ R

6. E
[
E[Y |X,Z]|X

]
= E[Y |X] and E

[
E[Y |X]|X,Z

]
= E[Y |X].
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6 Binomial Confidence Interval

6.1. Motivation. Suppose we flip a coin n times, and we record n1 heads. How
biased is the coin?

6.2. We could suppose these coin flips are random variables, then write

Sn =
X1 + · · ·+Xn

n
. (6.1)

We let
p̂ =

n1

n
. (6.2)

Then the central limit theorem tells us the bias lies in the interval[
p̂− z

√
1

n
p̂(1− p̂), p̂+ z

√
1

n
p̂(1− p̂)

]
(6.3)
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A Set Theory

1.1. Overview. This section is just to establish the notation used for set theory.
We use a “naive set theory”, which — for the author — is really just ZF+GC.

1.2. Global Choice. Recall we have quantifiers ∀ and ∃. We can also have a
quantifier ε which has the form

εx : P (x) (A.1)

and it returns the object x which satisfies the predicate P (x), if one exists. If there
is no such x (e.g., P (x) is a contradiction), then it returns an arbitrary object.

This ε operator is called the “Global Choice Operator”.

1.3. Definition. A “Set” is a well-defined collection of “stuff” without dupli-
cates.

1.4. Definition. If X is a set, and x is an object, if x lives in the collection X
we write x ∈ X and call it a “Element” or “Member” of X. We will write sets
using capital Latin letters unless otherwise indicates. If y does not belong to X,
we write y /∈ X.

Note any type of object can belong to a set. For example, we can have a set of
selected sets, the set of integers (usually denoted Z), etc.

Caution: It is illegal (“meaningless”) to write X ∈ X or X /∈ X.

1.5. Example. The empty collection is a set, denoted ∅ and called the “Empty
Set”. It is defined by the condition, for any x, we have x /∈ ∅.

1.6. Example. The collection of natural numbers N = { 1, 2, 3, . . . }, the natu-
ral numbers with zero N0 = { 0, 1, 2, 3, . . . }. The integers Z = {. . . ,−1, 0, 1, . . . }.
These are all sets.

1.7. Non-Example (Universe). Consider U the well-defined collection of all
sets. It is not a set, since it is illegal to write U ∈ U . No, the universe is usually
something “bigger” than a set (it’s a class). We usually don’t work with classes,
and so we won’t worry about them. But we’d like to note the collection of all sets
U is called the “Universe”.

1.8. Definition. Let X and Y be sets. If every element x ∈ X belongs to Y ,
and every y ∈ Y belongs to X, then we say the two sets are “Equal” and write
X = Y .

1.9. Definition. Let X and Y be sets. If every element x ∈ X belongs to Y ,
then we write X ⊆ Y and call X a “Subset” of Y .

1.10. Theorem. We have X = Y if and only if X ⊆ Y and Y ⊆ X.

1.11. Definition. Let Y be a set. A “Proper Subset” X of Y consists of a
subset that is not equal to Y . That is: X ⊆ Y and X 6= Y . We indicate proper
subsets by writing X ⊂ Y .

1.12. Examples. Observe we have N ⊂ N0 ⊂ Z.

1.13. Example. For any set X, we have X ⊆ X but X 6⊂ X.

1.14. Definition. Let X be any set. Then the “Power Set” of X is the
collection P(X) of subsets Y ⊆ X. Note this implies X ∈ P(X).

1.15. Proposition. Let X be any set. Then ∅ ∈ P(X) and X ∈ P(X).
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1.16. Definition. An “Ordered Tuple” (a, b) is a pair of mathematical ob-
jects a, b. The first slot a is the first component (sometimes called the first coordi-
nate).

We write (a, b) = (x, y) if and only if a = x and b = y.
More generally, if we have n objects, we can form the ordered n-tuple (x1, . . . , xn).

Again, equality is defined component-wise.

1.17. Definition. Let X and Y be sets. Then their “Cartesian Product” is
a set X × Y consisting of ordered pairs (x, y) ∈ X × Y where x ∈ X, y ∈ Y .

Again, we can generalize this to the Cartesian product of any number of sets
X1 × · · · ×Xn consisting of ordered n-tuples.

1.18. Definition. A “Function” f : X → Y associates to each x ∈ X precisely
one y ∈ Y usually denoted y = f(x).

Sometimes mathematicians assert functions are sets. Well, a function f is a
subset f ⊆ X ×Y with the property for each x ∈ X, we have precisely one ordered
pair (x, y) ∈ f .

1.19. Example. Let X be any set. The identity function id: X → X defined
by id(x) = x is a function on X.
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