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1 One Particle Systems: Mathematical Formalism
The simplest system to consider is a single particle. The function space used to model

quantum-mechanical states is a Hilbert Space H of square integrable functions on the
physical space (denoted by C):

L2(C) =

{
f :

∫
C
|f(x)|2d3x <∞

}
(1.1)

Note that in all fairness, H can be written in either position coordinates x or momentum
coordinates p. The relationship between the position-space and momentum-space is precisely
the familiar Fourier transform:

F(f)(p)
def
=

∫
eix·pf(x)d3x (1.2)

Despite the change of variables, F sends H to itself, so both f and its Fourier transform
F(f) are in H.

Remark 1.1. It should be emphasized that if f is square-integrable, then eix·pf(x) is square-
integrable but not necessarily integrable! That is, we have no guarantee that eix·pf(x) ∈
L1(C).

To define the Fourier transform on H, we should first define it on some suitably nice
subspace of H (e.g. the space of smooth functions with “compact support” — i.e. they
are zero outside of a compact subset of their domain). Then we observe that the Fourier
transform is an isometry (up to some scale factor) on our nice subspace, so we extend this
isometry from our nice subspace to all of H.
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We represent the observables by operators. More relevantly, the position operators x̂m
and momentum operators p̂m are represented in position-space by multiplication by the
coordinate fuhnctions xm and the partial derivative operators −i∂m (respectively). Observe
also that the Fourier transform converts multiplication by xm on functions of x into the
differential operators −i∂m on functions of p:

F(xmf)(p) = −i∂mF(f)(p). (1.3)

The natural question to ask is “What are the eigenstates of these operators?” Well, in
position space, we find the position eigenstates are just delta functions

(x̂mδq)(x) = x̂mδ(x− q) (1.4a)

= qmδ(x− q) (1.4b)

= (qmδq)(x) (1.4c)

Similarly, for the eigenstates of the momentum operators p̂m, we see that the eigenstates in
position-space are ep(x):

(p̂mep)(x) = −i∂m exp(ip · x) (1.5a)

= pm exp(ip · x) (1.5b)

= (pmep)(x). (1.5c)

But we have just two minor problems: 1. neither x̂m nor p̂n act on all of H, and 2. H
doesn’t contain the eigenstates of either operators. We can solve the first problem fairly
easily — we’ll consider the subspace S ⊆ H where the operators map S to itself. Similarly,
we resolve the second problem by defining the kets as elements of S∗, the space of continuous
antilinear functionals on S. Since p̂n acts on all functions of S, these functions must be
infinitely differentiable, and so S∗ will contain the δ-functions and all their derivatives.
Similarly, by taking the Fourier Transform, since x̂m acts on S, it follows that S∗ will contain
exponential functions exp(ip · x).

Instead of a single Hilbert space, we end up with a triple

S ⊆ H ⊆ S∗ (1.6)

The physical states live in S, and the operator eigenstates live in S∗. With appropriate
demands on the space S, this triple ends up being a Rigged Hilbert Space [de 05] [Mad06].
In this context “Rigged” is not in the sense of “This game is rigged” but rather in the sense
of “equipped” — like how a boat is “rigged” or “equipped to sail”.

� � In fact, the triple S ⊆ H ⊆ S∗ is a rigged Hilbert space if S is a nuclear subspace of H.
See Gelfand [GfS64] or Maurin [Mau68] for rigorous details about the notion of nuclear

spaces. We’ll discuss one such criteria for S to be nuclear. Specifically,

1. there exists a countable family ‖ · ‖k of norms on S with respect to which convergence is
defined by

fn → f ⇐⇒ ‖fn − f‖k → 0 ∀k ≥ 0; (1.7)

2. S is complete with respect to this notion of convergence; and

3. there exists a Hilbert-Schmidt operator on S with a continuous inverse.

We’ll leave the interested reader to refer to the cited sources.

In a rigged Hilbert Space we have eigenfunction expansions. More precisely, consider a
state |f〉 represented by the function f , let |x〉 be the position eigenstate represented by the
distribution δx. We assume the relationship between the functions and the kets is such that

f(x) = 〈x|f〉. (1.8)
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We can then expand the state |f〉 in terms of the position eigenstate |x〉 which should be of
the form

|f〉 =

∫
|x〉 〈x|f〉 d3x =

∫
f(x) |x〉 d3x. (1.9)

The conditions on S in a rigged Hilbert Space ensure that f(x)|x〉 is integrable for all f ∈ S.

2 One Particle Systems: Physical Aspects
We’re interested in a toy model of relativistic quantum mechanics, so we begin with

a single particle. All we really need, truth be told, is a state space plus a Hamiltonian
operator. We should remember, from Special Relativity, the energy-momentum four-vector
p̂µ has as its time component the Hamiltonian p̂0 = Ĥ. For convenience, we’ll work in the
momentum space with the momentum operator eigenbasis

p̂m|k〉 = km|k〉 (2.1)

We assume the states are normalized thus

〈k|k′〉 = δ(3)(k − k′). (2.2)

This means that the length of a ket is undefined. It is, nonetheless, a normalization suitable
for integration over momentum. As an added bonus, we also get the resolution of the identity

1 =

∫
|k〉 〈k| d3k (2.3)

Since energy-momentum is a four-vector, we demand that

p̂µp̂µ = Ĥ2 − |p̂mp̂m| (2.4)

needs to be constant on the orbits of the Poincaré group. Further if |k〉 and |k ′〉 are two
states of a single particle, then there exists a Lorentz boost from one to the other (up to
scale). Hence we assume the existence of a scalar quantity µ (the particle mass) which
satisfies

(Ĥ2 − p̂mp̂m)|k〉 = µ2|k〉 (2.5)

This implies that the Hamiltonian operator Ĥ is diagonal in the momentum eigenbasis (i.e.
the basis of eigenstates of the momentum operator):

Ĥ|k〉 =
(
‖k‖2 + µ2

)1/2 |k〉 (2.6)

The eigenvalues of the Hamiltonian operator come up enough times that we introduce the
shorthand for it:

ω(k)
def
=
(
‖k‖2 + µ2

)1/2
(2.7)

(This should be vaguely reminiscent of the de Broglie relations E = ~ω.)

Remark 2.1. Observe that this entire scheme we’ve devised is equivalent to taking the limit
of the state space for a cube of side L under periodic boundary conditions, i.e. the particle
in a box situation. In such a cube, we should recall the spectrum of the momentum operator
is discrete and the normalization is given by the Kronecker delta:

k =
2π

L
(nx, ny, nz), and 〈k|k ′〉 = δ k , k ′ (2.8)

This observation is taken advantage of when deriving the differential transition probability
per unit time for particle scattering.
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3 Unitary Representation of Poincaré Group
3.1 Action of Translation on States

The Lorentz transformation is usually “represented” by a matrix Λ which, when written
explicitly, is

(Λx)µ = Λµνx
ν (3.1)

where Einstein convention is used (implicit sum over ν occurs). We have that the matrix
Λµν must satisfy

ΛλµΛλν = ηµν (3.2)

where ηµν is the Minkowski metric (metric for flat spacetime).
Now, the Poincaré group is the set of Lorentz transformations and space-time transla-

tions, so the element of the group would be (Λ, a) such that

xµ → yµ = Λµνx
ν + aµ. (3.3)

The group multiplication law is then just

(Λ2, a2)(Λ1, a1) = (Λ2Λ1,Λ2a1 + a2). (3.4)

We are interested in irreducible unitary representations U(·) of our group, all we need to
worry about are the generators.

The translations, rotations, and boosts of the Poincaré group must act on the space
of states. A Poincaré group element g acts as a unitaruy operator U(g) on the state space.
The action must satisfy a multipication condition

U(gh) = U(g)U(h) (3.5)

for all g, h in the Poincaré group.
Translation of spacetime by a four-vector aµ is defined by

∆a(x) = x+ a. (3.6)

Translation of a state ψ, on the other hand, should be moving the graph by a. This means
that ∆aψ(x) = ψ(x− a). The unitary representation U(∆a) of ∆a must thus be defined by

U(∆a)|ψ〉 = |∆aψ〉. (3.7)

We’d like to find an expression for U(∆a) in terms of the energy-momentum four-vector p̂µ.
Evolution in time is translation of the observer forward in time, or (equivalently)

translation of the system backwards in time:

exp(−itĤ)|ψ(x)〉 = |ψ(x0 + t, x)〉. (3.8)

Let τµ = (−t,~0) be a four-vector, then we can rewrite our translation in time as

exp(iτµp̂µ)|ψ〉 = |∆τψ〉. (3.9)

Lorentz invariance implies that this equation is true whenever τ is timelike, and the additivity
of translations then shows this to be true for all four-vectors τ . From this definition of
U(∆a) we can therefore deduce that

U(∆a) = exp(iaµp̂µ). (3.10)

Although this unitary representation is derived in the position-space formulation of
quantum mechanics, it works equally well in the momentum-space formulation. We can
deduce that the unitary representation of translations on momentum eigenstates is given by

U(∆a)|k〉 = exp(iaµp̂µ)|k〉 = exp(iaµkµ)|k〉 (3.11)

where k0 = ω(k).
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Remark 3.1. Recall Taylor’s theorem in real analysis can be formulated as

f(x+ h) =

( ∞∑
n=0

hn
dn

dxn

)
f(x) = exp

(
h
d

dx

)
f(x) (3.12)

which should look familiar: we just deduced the unitary representation of spacetime transla-
tions should be

exp(iτµp̂µ)|ψ〉 = U(∆τ )|ψ〉. (3.13)

If we don’t distinguish |ψ〉 from ψ(x), we see that Taylor’s theorem guarantees our represen-
tation to be of spacetime translations.

3.2 Action of the Lorentz Group

The space of particle states is three dimensional. The energy k0 of a particle with
momentum k is constrained by

k0 ≥ 0 (3.14)

and
k2 = kµk

µ = µ2. (3.15)

Therefore the possible energy-momentum vectors lie on a hyperbolic sheet in k-space, the
mass hyperboloid. We need an integration measure on this hyperboloid if we want to do
Lorentz invariant computations.

Let θ(t) be the Heaviside step function

θ(t) =

{
0 if t < 0

1 if t > 0
(3.16)

Define an integration dλ(k) on the positive hyperboloid as follows:

dλ(k)
def
= d4kδ(k2 − µ2)θ(k0) (3.17)

The Lebesgue measure d4k is Lorentz invariant due to the Lorentz transformation having
unit determinant. Here since k2−µ2 is Lorentz invariant, the δ function is Lorentz invariant.
Similar reasoning holds for θ(k0) being Lorentz invariant.

We can take advantage of the identity

δ(f(k)) =
∑

{k:f(k)=0}

1

‖f ′(k)‖
δ(k) (3.18)

and the fact that

k2 − µ2 = (k2
0 − ‖k‖2)− µ2 (3.19a)

= k2
0 − (‖k‖2 + µ2) (3.19b)

= k2
0 − ω(k)2 (3.19c)

= (k0 − ω(k))(k0 + ω(k)) (3.19d)

to deduce that

δ(k2 − µ2)θ(k0) = δ
(
(k0 − ω(k))(k0 + ω(k))

)
θ(k0) (3.20a)

=
1

2ω(k)
(δ(k0 − ω(k))θ(k0) + δ(k0 + ω(k))θ(k0)) (3.20b)

=
1

2ω(k)
δ(k0 − ω(k))θ(k0) (3.20c)
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since δ(k0 + ω(k)) requires k0 < 0 which then demands that θ(k0) = 0, so that term drops
out completely. Observe that this means we can effectively eliminate k0 from any integral
with respect to ω(k) as follows:∫

f(k)dλ(k) =

∫
f(k)

(
δ(k0 − ω(k))

2ω(k)
θ(k0)d3kdk0

)
(3.21a)

=

∫
f
(
ω(k), k

) d3k

2ω(k)
(3.21b)

This integral and the arbitrary function f are commonly eliminated from this result, leaving
an equality of measures

dλ(k) =
d3k

2ω(k)
(3.22)

and
k0 = ω(k). (3.23)

If we define Lorentz-normalized kets |k〉 by

|k〉 =
(
2ω(k)

)1/2
(2π)3/2|k〉 (3.24)

with k0 = ω(k), then the new normalization conditions is

〈k|k′〉 = 2ω(k)(2π)3δ(3)(k − k′) (3.25)

and the resolution of the identity is based on the Lorentz invariant measure:

1 =

∫
|k〉〈k| d3k

(2π)32ω(k)
. (3.26)

With these Lorentz-normalized states, we can define the unitary representation of the Lorentz
group simply:

Theorem 3.2. If we define U(Λ) by U(Λ)|k〉 = |Λk〉, then U is a unitary representation of
the Lorentz group.

Proof. The multiplications property U(ΛΛ′) = U(Λ)U(Λ′) follows immediately from def-
inition. To show that the representation is unitary, we use the resolution of the identity

U(Λ)U(Λ)† =

∫
U(Λ)|k〉〈k|U(Λ)†

d3k

(2π)32ω(k)
(3.27a)

=

∫
|Λk〉〈Λk| d3k

(2π)32ω(k)
(3.27b)

= 1 (3.27c)

since the measure is Lorentz-invariant.

It is mildly surprising that U(Λ) defined in our theorem is a unitary operator due to |k〉
and |Λk〉 appear to have different lengths when Λ is a boost. However, δ(3)(0) is undefined,
so the normalization of the kets does not determine a length. We regard the uniformly
unlocalized state described by |k〉 as unphysical. The physical states have the form

|ψ〉 def
=

∫
ψ(k)|k〉 d3k

(2π)32ω(k)
(3.28)

where the measure is structured so 〈k|ψ〉 = ψ(k). We can check that the length of |ψ〉 is
well defined whenever ψ(k) is square-integrable and that our definition of U(Λ) makes the
representation unitary on the space of physical states.
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3.3 Representing the Poincaré Group

We really want to find a unitary representation of the Poincaré group, which is the
Lorentz group plus spacetime translations (i.e. rotations, Lorentz boosts, and space-time
translations). We have the representation condition U(gh) = U(g)U(h) must hold for all
g, h in the Poincaré group. We’ve seen what happens when both g, h are in the Lorentz
group, and when both g, h are space-time translations. We now need to ask: what happens
when one is a translation and the other is a boost?

We can uniquely factor any element g of the Poincaré group as the product

g = ∆aΛ (3.29)

where Λ is in the Lorentz group, and ∆a is a translation. Multiplication in the Poincaré
group depends on multiplication in the Lorentz group and addition of translations through
an interchange in the order of the two facts:

gh = ∆aΛ∆bM (3.30a)

= ∆a(Λ∆bΛ
−1)ΛM (3.30b)

= ∆a∆ΛbΛM (3.30c)

where we have used the identity
Λ∆bΛ

−1 = ∆Λb (3.31)

a relation trivially verified when we act on a 4-vector x.
Our definition of U so far covers translations and Lorentz group elements only; when

we extend to the Poincaré group, we do so through the definition

U(∆aΛ)
def
= U(∆a)U(Λ) (3.32)

We can now see that U is a representation of the Poincaré group if and only if U preserves
the action Λ∆bΛ

−1 = ∆Λb of Lorentz group elements on translations:

U(∆aΛ)U(∆bM) = U(∆a∆ΛbΛM) (3.33a)

⇐⇒ U(∆a)U(Λ)U(∆b)U(M) = U(∆a)U(∆Λb)U(Λ)U(M) (3.33b)

⇐⇒ U(Λ)U(∆b) = U(∆Λb)U(Λ) (3.33c)

⇐⇒ U(Λ)U(∆b)U(Λ)† = U(∆Λb) (3.33d)

We verify the final condition by evaluating both sides on some test state |k〉. From the right
hand side, we have

U(∆Λb)|k〉 = exp(iΛbµkµ)|k〉 (3.34)

and from the left hand side

U(Λ)U(∆b)U(Λ)†|k〉 = U(Λ)U(∆b)|Λ−1k〉 (3.35a)

= U(Λ) exp(ibµΛµ
νkν)|Λ−1k〉 (3.35b)

= exp(ibµΛµ
νkν)|k〉. (3.35c)

The equality of the two sides follows from the Lorentz-invariance of the inner product.
We can now summarize our results of U in the following theorem:

Theorem 3.3. The map U from the Poincaré group to operators on the state space defined
by

U(∆a)|k〉 = eia
µkµ |k〉 (3.36a)

U(Λ)|k〉 = |Λk〉 (3.36b)

U(∆aΛ) = U(∆a)U(Λ) (3.36c)

is a unitary representation of the Poincaré group.
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The unitary representation U is often boasted to successfully combines the principle (as
represented by the Poincaré group) with the principles of quantum mechanics (as represented
by unitary operators and state-space formalisms). This combined structure of a one-particle
state space provides the foundation for the many-particle state space used in all quantum
field theories.

4 Notes on a Position Operator
The astute reader would probably have realized by now we “implemented” relativity

in the momentum space. The question that naturally presents itself is “Why not try
to implement relativity in position-space, as we usually do when introducing relativity
classically?” In this section, we’ll answer that question.

The short answer is that it turns out to be inconsistent. We can sketch out the general
scheme and its problem in this paragraph too. Consider putting a particle (of mass m) into
a box whose sides are small compared to the Compton wavelength λ, then the uncertainty
in position satisfies

∆x≪ λ (4.1)

and the uncertainty in momentum satisfies

∆p≫ m. (4.2)

But this makes the range of energies so large that pair production becomes possible. Hence,
from first principles, the position of a one-particle system is not so well defined. We’ll show
(slightly more rigorously) that the notion of Lorentz causality is violated by measuring the
position operator.

We first set up the axioms for (properties satisfied by) the position operator x̂m. We
want:

Axiom 1 x̂ = x̂† (i.e. it’s self-adjoint, so it has real eigenvalues);

Axiom 2 If ∆a is a spatial translation, then U(∆a)†x̂mU(∆a) = x̂m + am

Axiom 3 If R is a spatial rotation, then U(R)†x̂mU(R) = Rm
′
mx̂

m.

From axiom 2 and U(∆a) = exp(iamP̂m), we deduce

eia
mp̂m x̂ne−ia

mp̂m = x̂n + an. (4.3)

(Note that the sign in the exponent reflects the relationship between the Lorentz dot product
and the Euclidean dot product of 3-vectors.) Differentiating both sides with respect to the
component an of a then setting am = ~0, we recover the usual commutation relations:

[ip̂n, x̂
m] = δmn. (4.4)

Remark 4.1. The position operator is “essentially” unique. That is to say, it’s unique
up to unitarity. Suppose we have two operators ŷm

′
, x̂m that satisfy our axioms. We’ll

demonstrate that there exists a unitary operator U such that ŷm = U†x̂mU .
Assume that ŷm is the position operator with respect to the basis |k〉. The canonical

commutation relations eq (4.4) shows that p̂n commutes with x̂n− ŷn. Therefore, supposing
any operator can be expressed using x̂m and p̂n, we have

ŷm = x̂m + fm(p̂). (4.5)

Axiom 3 however implies that fm(p̂) ∼ g(‖p̂‖2)p̂m. This vector-valued function of a vector
has zero curl and thus may be written as the gradient of a scalar function. Lets denote this
scalar function as φ(‖p̂‖2) where

φ(ξ)
def
=

∫ ξ

0

g(η)dη (4.6)
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If we define our new kets using a unitary operator U to change phases

|k〉new
def
= U |k〉 def

= exp(−iφ(‖k‖2))|k〉, (4.7)

then since
〈ψ′|ŷm|ψ〉 = new〈ψ′|UŷmU†|ψ〉new (4.8)

the new operators are UŷmU†. Writing U† = eA we find

UŷmU† = U
(
U†ŷm + [ŷm, U†]

)
(4.9a)

= ŷm + U [ŷm, 1 +A+
1

2
A2 + · · · ] (4.9b)

= ŷm + U(1 +A+
1

2
A2 + · · · )[ŷm, A] (4.9c)

= ŷm + [ŷm, iφ(‖p̂‖2)] (4.9d)

= ŷm − g(‖p̂‖2)p̂m (4.9e)

= x̂m. (4.9f)

We therefore conclude that any two sets of position operators x̂m, ŷn are related by a change
of basis. We also note since U is a function of the momentum operators, the new momentum
operators Up̂mU

† are precisely the old ones p̂m. This shows that the axioms determining
the position operator uniquely up to a choice of phase in the momentum eigenstates, and
this concludes our remark.

The simplest inconsistency emerges when we consider a state initially localized at the
origin and see whether it can be detected outside the forward lightcone of the origin.

Suppose we have a position operator x̂m. Let |x〉 be a basis of position eigenstates. Then,
form our knowledge of nonrelativistic quantum mechanics, we can choose the normalization
of these kets to be such that

〈x|k〉 = exp(ix · k). (4.10)

Now consider the evolution |ψ〉 of a state |ψ0〉 initially localized at the origin:

ψ0(x)
def
= (2π)3δ(3)(x) ⇒ ψ̂0(k) = 1 ⇒ |ψ0〉 =

∫
|k〉d3k, (4.11)

where ψ̂0 is the Fourioer transform of ψ0. The evolution of this state is given by:

ψ(t, x) = 〈x|e−iHt|ψ0〉 (4.12a)

=

∫
〈x|e−iHt|k〉d3k (4.12b)

=

∫
〈x|e−iω(k)t|k〉d3k (4.12c)

=

∫
e−iω(k)teix·kd3k. (4.12d)

If the theorey is relativistic, then a state initially localized at the origin should have zero
amplitude outside the lightcone (otherwise, there is a positive probability that something
could travel faster than light). We therefore proceed to estimate ψ(t, x) outside the light
cone. Using spherical coordinates, letting k = ‖k‖, r = ‖x‖, we find that

ψ(t, x) =

∫ 1

−1

d(cos θ)

∫ 2π

0

dφ

∫ ∞
0

k2e−it
√
k2+µ2

eikr cos θdk (4.13a)

=
2π

ir

∫ ∞
0

ke−it
√
k2+µ2

(eikr − e−ikr)dk (4.13b)
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=
2π

ir

∫ ∞
−∞

ke−it
√
k2+µ2

eikrdk. (4.13c)

We can use complex analysis to evaluate this integral when r > t, we deform the contour of
integration from R to the first principal branch cut from iµ to i∞. Substituting k = iz, we
find

ψ(t, x) =
4πi

r

∫ ∞
µ

z sinh(t
√
z2 − µ2)e−zrdz (4.14)

which is clearly nonzero.

Remark 4.2. The integral we’ve been manipulating is actually divergent. This is a conse-
quence of the extreme nature of the initial state |ψ0〉. If we had started with a physical state
instaead of a position eigenstate, there would be no convergence problem. The moral of the
story is to treat integrals which arise in such situations as defining distributions.

The outcome is that a position operator is inconsistent with relativity. This compels us
to find another way of modeling localization of events. In field theory, we do this by making
observable operators dependent on position in spacetime.

5 Conclusion
We’ve reviewed some notions from quantum mechanics, such as the Rigged Hilbert

Space and using unitary operators for observables. When using representation theory, we
need a unitary representation of a group for use in quantum theory.

We’ve introduced various aspects of making quantum mechanics relativistic. The main
approach is to take advantage of the fact that special relativity is basically “just” the
Poincaré group. We then proceeded to find a unitary representation of the Lorentz group
and the group of spacetime translations, then combined them in a suitably nice way.

We’ve considered the situation of making the position operator relativistic, and concluded
after a few naive attempts that it wouldn’t work.

The interested reader is free to peruse the resources cited in the bibliography for further
reading (specifically, the notion of measurement relative to an observer is tackled beautifully
in Gambini and Porto [GP02]).
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