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Introduction

These are my notes on quantum gravity taken from Steve Carlip’s course during Spring
Quarter of 2010 at UC Davis. Lectures were on Wednesdays and Fridays. Any errors or
typos are mine. I have opted to include the inline citations, which Carlip gave in class, and
collected them in the end in the references section.

I have tried to correct some small idiosyncracies in my notes, like referring to the wave
functional as a wave function.

Lecture 1.

The first paper on quantum gravity was written by Rosenfeld in 1930.1

A small aside on if gravity needs to be quantized. “Well everything else is [quantized].”
True, but gravity is slightly different. The proper answer is: we don’t know for certain but
it seems likely. Lets consider a few thought experiments.

We will try to cover the collapse of the wave function without getting into what it really
means. Let us ask two questions:
(1) Does gravity collapse the wave function?
(2) Do other measurements collapse the wave function?

There are four possible answers.

Answer 1: No, No. This is the Everett interpretation of quantum mechanics. This is fine
if everything is quantum mechanical, but what if gravity is not quantum mechanical? A
classical gravitational field coupled to the quantum mechanical matter results in observable
inconsistencies.

x Don N. Page and C.D. Geilker, “Indirect Evidence for Quantum Gravity”. Phys. Rev.
Lett. 47 (1981) pp.979 et seq. doi:10.1103/PhysRevLett.47.979

Page and Geilker experiment testing if gravity is classical and matter is quantummechanical.

Answer 2: No, Yes. The paper for this perspective:

x Kenneth Eppley and Eric Hannah, “The necessity of quantizing the gravitational
field”. Foundations of Physics 7 (1977) pp.51–68 doi:10.1007/BF00715241

Eppley and Hannah argue if this were the case, we could send information faster than
light. Their argument is a tad elaborate.

∗This is a page from https://pqnelson.github.io/notebk/

Compiled: November 9, 2022 at 3:20pm (PST)
1I believe this is, in fact, two papers by Leon Rosenfeld:
(1) “Zur Quantelung der Wellenfelder”, Ann.Phys. 397 (1930) 113–152. An English translation may be

found thanks to D. Salisbury, Max Planck Institute for the History of Science, Preprint 381 (2009)
https://pure.mpg.de/rest/items/item_2274368_1/component/file_2274366/content.

(2) “Über die Gravitationswirkungen des Lichtes”. Z. Phys. 65 (1930) 589–599.
The curious reader may peruse Peruzzi and Rocci’s “Tales from the prehistory of Quantum Gravity. Léon
Rosenfeld’s earliest contribution” arXiv:1802.08878 for a summary of Rosenfeld’s contributions to quantum
gravity.
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Consider a particle in a box symmetric in the middle. We lower
some barrier in the middle (the dashed line to the right), split the
box in two. Send one to Pluto, the other remains here. Measure the
gravitational field. The measured field shouldn’t be that of a whole
electron since that violates the conservation of energy, and such a
violation is bad. We are assuming that gravity is classical, so both
observers should measure the gravitational field for half of an electron. Open the box [on
Earth]. If the electron is present, the wave function collapses, and information instanta-
neously changes — the gravitational field of Pluto’s box instantaneously changes. That’s
bad.

What if we try to weaken causality? Well, causality is either there or not, it’s like
pregnancy.

One may be able to weasel out of it by supposing that measurements may be generalized
a bit.

Answer 3: Yes, No. This is Roger Penrose’s idea. We modify Schrodinger’s equation to
include some “weak nonlinearities” from gravity.

Answer 4: Yes, Yes. Gravity — albeit classical — causes collapse of the wave function
and measurement does as well. This leads to violation of uncertainty, or the conservation
of energy(?).

θ
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Example (Heisenberg microscope). Consider
a microscope and an electron some distance f
from the lense. We shine some photon to see the
electron. We ignore factors and use small-angle
approximations. Also we set c = 1.

Lets look at the uncertainty in momentum.
The electron receives momentum from the colli-
sion of the photon with it. Suppose the energy
of the electron is E. We have

∆px ∼ E sin(θ). (1.1)

What about the uncertainty in position? This comes from the diffraction limit, we can
approximate

θc ∼ λ/D, (1.2)

we can find the exact calculations from Jackson [Classical Electrodynamics]. We have

∆x ∼ fθc ∼ (fλ/D) ∼ λ/θ. (1.3)

So we find
∆x∆px ∼ Eλ, (1.4a)

then using the de Broglie relation Eλ ∼ h gives us

∆x∆px ∼ h. (1.4b)

Classically, for a gravitational wave, we can have E as low as we want, and λ as large as we
want. This violates the uncertainty principle.

If we violate the uncertainty principle, presumably all of quantum mechanics is under-
mined. On the other hand, momentum conservation is violated if the uncertainty principle
is preserved.

There are limits to how accurately we can measure low energy gravitational waves. The
apparatus has to be smaller and more massive, but that may collapse into a black hole.
This may be a loophole to the aforementioned [Heisenberg microscope] argument.

Although none of these are conclusive, they seem to imply that gravity is quantized.
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1.1 Semiclassical Gravity

Suppose we have classical gravity and quantum fields. The Einstein field equations become

T̂µν | ψ⟩ =
1

8π
Gµν | ψ⟩, (1.5)

which may be a bit too restrictive since T̂µν may have noncommuting elements. On the
other hand, we could make it

⟨T̂µν⟩ =
1

8π
Gµν . (1.6)

The metric now depends on the matter field, and the matter field depends on the metric.
This becomes nonlinear, albeit a “weak” nonlinearity.

We can look at the Newtonian version of this:

iℏ
∂

∂t
| ψ⟩ =

(
−ℏ2

2m
∇2 + V

)
| ψ⟩,

∇2V = 4πGmρ = 4πGm
∑
j

mj |ψj |2.
(1.7)

There is a paper on this:
x P.J. Salzman, S. Carlip, “A possible experimental test of quantized gravity”. arXiv:gr-qc/0606120,

9 pages.
Suppose we start with a single particle with a Gaussian wave function. For small mass, it
behaves like a free particle. For a large mass, the width narrows since gravitational collapse
“wins out”. For somewhere in between, there is nonlinear wiggling.

If we neglect the self-gravitating part, we recover the Hartree approximation.
There is another potential problem that the covariant divergence of the quantum stress-

energy tensor is not conserved. We need to include in the stress-energy tensor the contri-
bution of the measurement apparatus.

1.2 Positive Aspects of Quantizing Gravity

There are some positive aspects of the quantization of gravity!

(1) There are singularities in general relativity which need to be dealt with. This is similar
to back when quantum mechanics was starting and we were answering questions like,
“Why doesn’t the electron fall into the nucleus?”

(2) Quantum gravity may deal with the problem of infinities in quantum field theory.
Consider the renormalization of mass,

m(ε) = m0 +
e2

ε
, (1.8)

where we include the electric self-energy (which looks like e2/ε). If we include the
classical self-energy to this, we have,

m(ε) = m0 +
e2

ε
− Gm(ε)2

ε
. (1.9)

We can solve for m(ε) to find that this is finite, it is something like the Planck mass
times 137 or 1/137.

We can also see the sum of Feynman diagrams of the gravitational self-interaction
of the electron is a finite sum,

+ + · · · = finite, (1.10)

despite each term being divergent! (People are finding sets of finite sums of Feynman
diagrams in supergravity. There is no proof yet.)
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(3) There are a few physical systems we would like to understand that only quantum
gravity can answer. The very early universe when quantum effects were present as
well as gravity being the dominant force. Black holes also may be better understood
with the quantization of gravity.

1.3 Why not Quantum Gravity?

Well, why not quantize gravity? In ordinary quantum theory, the basic observables are local.
Consider a scalar field φ̂(x), the value of the field at point x, the axiomatic formulations
of quantum field theory these are observables. This does not make sense, since x does not
make sense. There is no background. The symmetry of general relativity is diffeomorphism
invariance, i.e., invariance under change of coordinates. If x→ x+a, then φ̂(x)→ φ̂(x+a)
which does not make sense.

This is already an issue in classical general relativity. We need to be careful not to
write “the position x of blah”, but instead “the time an atomic clock reads for a laser to
reach some location”. This is nonlocal, but what about this treatment in quantum theory?
It’s fine in classical general relativity, but we have problems in quantum mechanics with
nonlocal stuff.

Lecture 2.

In classical general relativity, there are no local observables, so we do not know what
the right operators should be. For a proof of the absence of local observables, see:

x C.G. Torre “Gravitational Observables and Local Symmetries”. Phys. Rev. D48
(1993) R2373–R2376(R); arXiv:gr-qc/9306030.
doi:10.1103/PhysRevD.48.R2373

A particular example of this is the “problem of time”.
Consider a free scalar field in flat Minkowski spacetime, pick an initial time slice and

a final time slice to be the same in two different foliations. Is the time evolution in one
foliation equivalent to the time evolution in the other?

|ψ1(t)⟩ |ψ2(t)⟩

We should be able to ask if we have

|ψ1(t)⟩ = U|ψ2(t)⟩, (2.1)

where U is a unitary matrix indicating a change of bases.
Torre and Varadarajan [17, 18] show, in general, these are not related by a unitary

matrix. But we can relate two operators by orderings, which hold in the classical limit.
Determining time by spatial hypersurfaces requires using the metric. Perhaps we can

use the expectation value of the metric while demanding it to be spatial but this depends
on the wave function which we’re trying to find.

A lot of these problems come from thinking in the Schrodinger picture, perhaps using
the Heisenberg picture fixes it. There are indications from lower dimensional approaches
that this may be correct.
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2.1 Quantization

If we want to quantize general relativity, we need to talk about what it means to quantize
something. This is—for physicsts—the wrong question. There may be more than one way
to go to the classical limit, but we work with the ones that are experimentally correct.

We start with some classical phase space with coordinates (q, p) and some Poisson
bracket

{p, q} = 1. (2.2)

We want to put hats on everything
[p̂, q̂] = iℏ. (2.3)

We look for unitary irreducible representations on a Hilbert space, and so on. That’s the
quantum theory. We have the rule

{q, p} 7→ 1

iℏ
[q̂, p̂], (2.4)

and for any observables A and B we have:

{A,B} 7→ 1

iℏ
[Â, B̂]. (2.5)

In general, this is impossible. There’s a “no go theorem” from van Hove proving there’s no
consistent way to do this.

We have to choose some subset of functions on the phase space, some set of preferred
phase space functions, that is “small enough” that this mapping from Poisson brackets to
commutators is consistent. But it must be “large enough” so that any other function can be
expressed in terms of the preferred set. This is what we do when we quantize the Hydrogen
atom.

Suppose we have a phase space with a symmetry group G which relates any point with
any other point. So we have the Poisson bracket be preserved

{gA, gB} = {A,B}. (2.6)

If H is the stabilizer of x0 — so h ∈ H implies hx0 = x0 — then G/H is the phase space.
In this case, we choose the generators of the action of the group on the symmetric space for
the preferred functions to quantize.

The Stone–von Neumann theorem ensures the representation of translations is unique
up to unitary equivalence. But this theorem does not hold in infinite-dimensions [i.e., for
field theories].

There is another approach to quantization called “deformation quantization”. We have
a quantization map,

Q : phase space→ operators (2.7)

such that
(1) Linearity: Q(c1f1 + c2f2) = c1Q(f1) + c2Q(f2)
(2) Preserves identity: Q(1) = 1
(3) Q(x), Q(p) are represented irreducibly
(4) Q({f, g}) = i

ℏ [Q(f),Q(g)] +O(1)
See:

x P. Tillman, “Deformation Quantization, Quantization, and the Klein-Gordon Equa-
tion”. J.Phys. A 40 (2007) 7017–7024; arXiv:gr-qc/0610141.
doi:10.1088/1751-8113/40/25/S55

x P. Tillman, “Deformation Quantization: From Quantum Mechanics to Quantum Field
Theory”. arXiv:gr-qc/0610159

x S. Twareque Ali, Miroslav Englǐs, “Quantization Methods: A Guide for Physicists
and Analysts”. Rev.Math.Phys. 17 (2005) pp.391–490; arXiv:math-ph/0405065.
doi:10.1142/S0129055X05002376
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There is the path integral, which is just the continuous sum over the paths, we write
this formally as: ∫

[dq]eiS . (2.8)

We can get different answers depending on how we define the derivative, and we get extra
terms of order ℏ. We think of these ambiguities as normalization.

Lecture 3.

We spoke about what it means to quantize a system. This time we will discuss naive
quantization of a system with constraints.

An addendum from last time: Take a one-dimensional particle moving along a
line. We have q, p be the canonical coordinates and we make the Poisson bracket into
commutators

{q, p} 7→ i

ℏ
[q̂, p̂]. (3.1)

The operator exp(iap̂/ℏ) generates translations in position, so:

eiap̂/ℏq̂e−iap̂/ℏ = q̂ ± a. (3.2)

Hence q̂ could take on any value.
Suppose we move on the positive real line, not the entire line. We can use the affine

commutation relations. We use q̂ and

D̂ = q̂p. (3.3)

Classically we have
{q,D} = q, (3.4)

yet quantum mechanically,
[q̂, D̂] = iℏq̂. (3.5)

This is a different representation than the first set of commutators.
We have

eiaD̂/ℏq̂e−iaD̂/ℏ = eaq̂. (3.6)

So this D̂ operation is just dilation.
This ought to be important since the “position” [in general relativity] is the metric on

a spatial hypersurface, it should be positive definite. In the naive way, we can get timelike
directions or nondefinite values, etc. We probably ought to use affine commutators.

(The Poisson bracket is unique. If we used the Heisenberg brackets, there would be an
ordering problem, though not a serious one since we could use a symmetrized product.)

3.1 Quantization of Constrained Systems

In general, we have some action (we use I for the action since, in Euclidean quantum gravity,
the action is minus the entropy and S is used for entropy)

I =

∫
L(q, q̇) dt. (3.7)

In general, higher-order derivatives in the Lagrangian generically leads to unbounded ener-
gies. For a review paper on this, see:

x R.P. Woodard, “Avoiding Dark Energy with 1/RModifications of Gravity”. Lect. Notes
Phys. 720 (2007) pp.403–433; arXiv:astro-ph/0601672.
doi:10.1007/978-3-540-71013-4 14
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There are some exceptions, for example, when there are an infinite number of derivatives
(but this is a sort of nonlocality, and there have been some papers recently on a nonlocal
generalization of the Einstein–Hilbert action), or when we can integrate by parts to get to
first-order. This is what happens with Einstein–Hilbert action.

The action of a system with constraints looks like

I =

∫
(L(q, q̇)− λC(q, q̇)) dt, (3.8)

where λ is the Lagrange multiplier and C(q, q̇) is the constraint. By varying the action with
respect to λ, we obtain a constraint on the initial data

C(q, q̇) = 0. (3.9)

We can rewrite the action to take into account constraints; if there are no second-order time
derivatives of certain variables, then there will be constraints.

For general relativity, from the conservation laws, we have

∇µG
µν = ∂µG

µν + . . . (3.10a)

= ∂tG
tν + ∂iG

iν + . . . . (3.10b)

This means that each term has to have one time derivative and one spatial derivative (in
the Einstein tensor).

We can look at it one way and say the space of initial data is smaller than we thought.
Usually constraints “generate” gauge transformations, meaning we can look at it as:

δq = {εC, q} (3.11a)

δp = {εC, p}, (3.11b)

where ε is an arbitrary function of time. This is a generator of canonical transformations.
In general, they’re gauge transformations.

Here’s the sketch of the basic idea (see Henneaux and Teitelboim’s Quantization of
Gauge Systems for further details). We want to consider the variation of the action δI.
Let’s consider the action in Hamiltonian form:

I =

∫
(pq̇ −H − λC) dt. (3.12)

We often write
H∗ := H + λC, (3.13)

and refer to it as the “Extended Hamiltonian”. Let’s consider the variation of the kinetic
term:

{εC, pq̇} = {εC, p}q̇ + p
d

dt
{εC, q} (3.14a)

=

(
ε
∂C

∂q

)
q̇ + p

d

dt

(
−ε∂C

∂p

)
(3.14b)

= ε
∂C

∂q
q̇ − d

dt

(
εp
∂C

∂p

)
+ ε

∂C

∂p
ṗ (3.14c)

= ε

(
∂C

∂q
q̇ +

∂C

∂p
ṗ

)
− d

dt

(
εp
∂C

∂p

)
(3.14d)

= ε
dC

dt
− d

dt

(
εp
∂C

∂p

)
(3.14e)

= −ε̇C +
d

dt

(
εC − εp∂C

∂p

)
. (3.14f)
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The next term we need to examine is {εC,H} which, in general, could be anything. If C
remains a constraint under time translations, then the bracket with the Hamiltonian H is
also a constraint. In general this is true, the commutator between the Hamiltonian and a
constraint is another constraint. Let

{H,C} = vC (3.15)

where v is some function, then
{εC,H} = −εvC. (3.16)

Putting all of this together, we find

{εC, pq̇ −H − λC} = −ε̇C +
d

dt

(
εC − εp∂C

∂p

)
+ εvC − {εC, λC}. (3.17)

If
δλ = −(ε̇− εv), (3.18)

then the variation of the action is zero. This is because δC = {εC,C} = 0, so

{εC, λC} = {εC, λ}C = (δλ)C. (3.19)

Plugging this back into Eq (3.17) makes {εC, pq̇ −H − λC} into a total derivative, which
contributes nothing to the action.

The moral of the story is that constraints generate gauge transformations and, in general
(with the exception of some pathological counterexamples), the converse holds too. Note:
if {C,C} ∝ C, then the results still hold.

Now we use the results, and generalize to multiple constraints. We need

{Ci, Cj} = fij
kCk (3.20)

where fij
k are “structure constants” and these are called “first-class constraints”. (If we

change Poisson brackets to commutators, these are the generators of the gauge algebra —
or, at least, the structure constants are those from the Lie algebra of the gauge group.)

There are also “second-class constraints” which do not generate gauge transformations.
There are various ways to handle constraints in the quantization process. There is a

constraint surface in the phase space when the constraints are satisfied. We have this gauge
invariance which takes a physical state on this constraint surface and produces another dis-
tinct point in the phase space, but is physically indistinguishable from the original physical
state.

Constraint
Surface

C = 0

Gauge Orbits

Physically
Interesting

“Sections”

The space of orbits is what is interesting. We take the physical degrees of freedom by taking
some subsurface which cuts through the phase space orbits only once for each orbit.

There are times when a section may not contain an orbit (or some other unpleasant
problem), which is the Gribov ambiguity.

For electromagnetism, we have Aµ → Aµ + ∂µΛ.
The approaches to quantizing (“canonically”) systems with constraints:
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Approach 1: Reduced phase space quantization, the recipe is:
(1) Clasically solve the constraints.
(2) Choose a section (“gauge fix”).
(3) Insert into the action I and quantize.

Part of the problem is that, well, sometimes solving the constraints is fairly hard. For
example, for classical general relativity, we do not know the general solution for Einstein’s
field equations.

A second problem is when fixing a gauge, when we jump to the third step, the resulting
field is typically nonlocal. Consider electromagnetism. We have Aµ which is ambiguous, we
could have

Aµ = Ãµ + ∂µΛ. (3.21)

We can gauge fix using the Lorenz gauge ∂µA
µ
= 0 for some gauge fixed potential A

µ
. We

can expand this to be:

∂µA
µ
= ∂µ(A

µ + ∂µΛ) (3.22a)

= ∂µA
µ +□Λ = 0. (3.22b)

Then we have
Λ = −□−1∂µA

µ, (3.23)

and then
A

µ
= Aµ − ∂µ□−1∂νA

ν , (3.24)

or
Aµ = A

µ − ∂µ□−1∂νA
ν . (3.25)

The second term on the right-hand side is horribly nonlocal. BRST says that sticking a
differential gauge transformation back into the system when solved is illegal. There are
particular cases when this works; but the more complicated the theory, the harder this
approach becomes.

Approach 2: Dirac quantization. The basic recipe is:
(1) Quantize the whole system.
(2) Impose constraints as operator conditions. That is, we define the physical states as

Ĉ | physical⟩ = 0, (3.26)

the kernel of a “constraint operator” (or the intersection of kernels of constraint op-
erators). The states are automatically gauge invariant this way.

(3) Define the inner product on physical states (intuitively: “gauge fixing the inner prod-
uct”). How to do this is less obvious and usually hard.

(4) Find physical operators Ôphys that take physical states to physical states (so if one re-
alizes this, then it’s equivalent to the operators which commutes with the constraints).
That is, we need to find

[Ôphys, Ĉ] = 0. (3.27)

(For general relativity, these physical operators are in general nonlocal and we don’t
know what they are.)

Example. The parametrized particle. For a one-dimensional particle subjected to some
potential, then

I =

∫
(pq̇ −H) dt. (3.28)
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If we change t to some monotonic function of time, then pq̇ dt remains invariant but the
Hamiltonian contribution H dt doesn’t quite remain invariant. Let’s define a parameter τ
such that,

I =

∫ (
p
dq

dτ
−H dt

dτ

)
dt. (3.29)

Let us write q0 = t and p0 = H, so we can write the action as:

I =

∫ (
pµ

dqµ

dτ

)
dτ. (3.30)

But to do this, we observe H = H(p, q), so we need to introduce a constraint:

I =

∫ (
pµ

dqµ

dτ
− λ(p0 +H(p, q))

)
dτ. (3.31)

The constraint generates parametrization invariance under

τ → τ + δτ. (3.32)

So far, so good.
The reduced phase space approach solves the constraint, which is trivially p0 = −H.

We plug this back in:

pµ
dqµ

dτ
= p1

dq1

dτ
+ p0

dq0

dτ
(3.33a)

= p1
dq1

dτ
+ (−H)

dq0

dτ
. (3.33b)

We plug in our gauge-fixing q0 = t, then

pµ
dqµ

dτ
= p1

dq1

dτ
+ (−H)

dt

dτ
. (3.33c)

The Dirac approach where the wave function Ψ[qµ], the commutators [pµ, q
ν ] = iℏδµν ,

the constraint operator is

(p̂0 + Ĥphys)ψphys = 0 (3.34a)

=

(
−iℏ ∂

∂q0
+ Ĥphys

)
ψphys. (3.34b)

We need to gauge fix the inner product∫
Ψ∗

1(q
µ)Ψ2(q

µ) dqidq0 =

∫
⟨Ψ1 | Ψ2⟩phys dt

=∞
(3.35)

where ⟨Ψ1 | Ψ2⟩phys is the usual old-school inner product of quantum mechanics. This
integral over time generates infinities, we use a rigged Hilbert space to define the inner
product—roughly speaking, we “divide out by infinity”.
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Part I

Canonical Quantum Gravity

Lecture 4.

I was too sick to attend, but I have been told: Professor Carlip argued the gauge
symmetries of general relativity are isometries described by Killing equation, derived ADM
coordinates including lapse and shift functions, described extrinsic curvature in terms of
lapse and shift, rewrote the Einstein–Hilbert action in ADM coordinates, derived canonically
conjugate momentum to metric, wrote first-order form of the action, argued lapse and shift
functions are Lagrange multipliers.

In second-order formalism positions x and velocities ẋ are treated as independent vari-
ables, but first-order formalism treats positions x and momenta p as independent variables.
Also, Professor Waldron refers to the ADM action’s terms as:

IADM =

∫
( πij q̇ij︸ ︷︷ ︸
symplectic

term

−NiHi −NH︸ ︷︷ ︸
constraints

) d4x. (4.1)

Also notation: Di determined using the spatial metric qij such that Diqjk = 0.
Caveat: these are notes I’ve written, not based on Dr Carlip’s lectures, but

from what I’ve learned over the years.
We start by choosing some coordinate t and foliate spacetime with spacelike hypersur-

faces Σt indexed by t. We have the unit normal nµ on each hypersurface Σt, as well as the
induced 3-metric qij . For spacelike hypersurfaces

nµnµ = +1. (4.2)

We then have a projection of tensors onto their spatial components

hµν = δµν − nµnν . (4.3)

We define the extrinsic curvature as the spatial projection of the covariant derivative for
the unit normal,

Kµν = hµ
ρ∇ρnν . (4.4)

It’s not hard to see nµKµν = 0 and nνKµν = 0 (since it’s a spatial tensor).
Now, we have the ADM decomposition of the metric. We begin with the line element,

using the Lorentzian analog of the Pythagorean theorem. Intuitively, we should imagine
something like the picture:

Σt

Σt+dt

xi + dxi

xi +N i dt

xi

N dt

ds

We start off with a point on a hypersurface Σt. If we translate along the time dimension
from t→ t+dt, then we end up at xi+N dt— this is because the coordinates are arbitrary,
but N dt should be the “infinitesimal proper time” not the “infinitesimal coordinate time”.

11



Similarly, we could have some rotational effect, which we would account for by adding a
translation on Σt+dt by −N i dt. This gives us the line element

ds2 = N2 dt2 − qij(dxi +N i dt)(dxj +N j dt). (4.5)

Here N is called the “Lapse function”, the N i are called the “Shift vector”.
It’s not too hard (I think it’s an exercise in homework 2) to show that

Kij =
1

2N
(∂tqij −DiNj −DjNi) (4.6)

where Dj is the spatial covariant derivative (compatible with qij , i.e., Diqjk = 0). We also
find the inverse 4-metric decomposes like

gab =

(
1

N2 −Ni

N2

−Nj

N2 −qij + NiNj

N2

)
, (4.7)

where N i = qijNj , and q
ij is the inverse of qij (i.e., qijqjk = δik).

We rewrite the Lagrangian using the Gauss–Codazzi equations

(4)R = (3)R+KijK
ij −K2 − 2∇µ(n

µ∇νn
ν − nν∇µn

µ). (4.8)

Then the action

IEH =
1

16πG

∫
(4)R

√
−g d4x (4.9a)

=
1

16πG

∫∫
[(3)R+KijK

ij −K2](N
√
q) d3xdt+ (boundary terms). (4.9b)

We find the conjugate momenta to the 3-metric qij are

πij =
∂L

∂(∂tqij)
=

1

16πG
(Kij − qijK). (4.10)

Using this, we can write the canonical action

I =
1

16πG

∫∫
(πij∂tqij −Hcan) d

3xdt, (4.11)

where Hcan = πij∂tqij − L.
We should expect there to be constraints, since the components of the metric N and Ni

do not enter the action with any time derivatives. In fact, it turns out we have

H =
16πG
√
q

(πijπ
ij − 1

2
π2)− 1

16πG

√
q (3)R (4.12a)

and

Hi = −2Djπ
ij (4.12b)

are the two constraints, called the Diffeomorphism constraint (or Hamiltonian constraint)
and the Momentum constraints, respectively.

The Poisson brackets would be defined on a spatial hypersurface (so t = constant) as

{qij(x), πkℓ(x′)} = 1

2
(δki δ

ℓ
j + δkj δ

ℓ
i )δ̃

(3)(x− x′), (4.13)

where we use the densitized delta δ(3)(x)
√
q = δ̃(3)(x) since it satisfies:∫

δ̃(3)(x) d3x = 1. (4.14)

A number of exercises concerning the Poisson bracket may be found in Homework 3. In
particular, the Poisson bracket of the constraints generate diffeomorphisms (morally speak-
ing).
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Lecture 5.

The action of general relativity in Hamiltonian form,

IADM =

∫
[πij q̇ij −NH−NiHi] d3xdt. (5.1)

The sign conventions varies, but the Hamiltonian is:

H =
16πG
√
q

(πijπij − π2)− 1

16πG

√
q (3)R, (5.2a)

and the momentum constraints,
Hi = −2Djπ

ij . (5.2b)

This is a Hamiltonian for general relativity based on a certain set of variables: the metric
for a spatial hypersurfaces as the position variable and its time derivative for its conjugate
momenta.

We can consider the Poisson brackets for this field:

{qij(x), πkℓ(x′)} = 1

2
(δki δ

ℓ
j + δkj δ

ℓ
i )δ̃

(3)(x− x′), (5.3)

where the tilde indicates a densitized delta function, so∫
δ̃(3)(x) d3x = 1. (5.4)

In particular, we do not need to explicitly write out
√
q. Using a densitized delta should

make intuitive sense, since πkℓ is a tensor density.
This is a completely constrained system, with the momentum constraints generating

spatial change of coordinates. Consider:

{
∫
ξiHi(x) d

3x, qkℓ(x
′)} = {−2

∫
ξiDjπij(x) d

3x, qkℓ(x
′)} (5.5a)

= {
∫

(ξiDj + ξjDi)π
ij(x) d3x, qkℓ(x

′)} (5.5b)

= −(Dkξℓ +Dℓξk) (5.5c)

= −Lξqkℓ. (5.5d)

This means that Hi are generators of spatial coordinate transformations. The Poisson
bracket for the momentum constraints and the πij are a bit more complicated.

We are working on spatial hypersurfaces, so there is a question of what “H generates
time translations” even means. The easy bracket is with qij , technically what these yield
are “surface deformations”. (On the horizon of a black hole, surface deformations are not
equivalent to changes of coordinates which could be bad. . . )

5.1 Reduced Phase Space Quantization

We have two ways to quantize this system: reduced phase space approach, and the Dirac
approach. Lets begin with the reduced phase space approach.

Recall the basic idea with the reduced phase space quantization is to solve the con-
straints, find new variables, then quantize. The problem with this is solving the constraints,
which is roughly the same as solving Einstein’s field equations. We don’t have it, or any-
thing near it. We need to assume some sort of symmetry (e.g., cylindrical symmetry). This
leads to “minisuperspace” or “midisuperspace”. In some sense, this is the wrong thing to do
because assuming symmetry at this level assumes that quantum states have this symmetry
too.
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An alternative approach is to change variables that change 4 nightmarish PDEs into 4
simpler equations.

This is the York time-slicing, the work on this was done predominantly by Fischer and
Moncrief. We start with

qij = ϕ4q̃ij (5.6)

where ϕ is the conformal factor, q̃ij is such that the Ricci scalar is

(3)R[q̃] ∈ {0,±1}. (5.7)

This is the Yamabe condition. We can always do this for any Riemannian manifold. (The
reason why (3)R[q̃] = 0 or ±1 is due to the topological properties of the spatial hypersurface;
it is some deep result in topology that is not immediately obvious.) This is for spatially
compact universes (or asymptotically flat ones).

We need the decomposition of the canonical momentum:

πij =
1

16πG
[ϕ−4pij − 2

3
Kϕ2q̃ij

√
q̃︸ ︷︷ ︸

trace part

+(D̃iY j + D̃jY i︸ ︷︷ ︸
symmetrized covariant
derivative of a vector

−2

3
q̃ijDkY

k)] (5.8)

where Y i is a density, pij is a density, and D̃iq̃jk = 0. (Locally any vector in 3 dimensions
can be written as ∇ϕ+∇×A.) We have

D̃ip
ij = 0 (5.9a)

and
q̃ijp

ij = 0. (5.9b)

The momentum constraint Diπ
ij = 0 can be translated into a covariant derivative with

respect to q̃, we have

Diπ
ij = (. . . )D̃ip

ij + (. . . )∂jK + (. . . )D̃i(D̃
iY j + . . . ) = 0. (5.10)

The crucial step: we choose Crucial Step
t = −K, (5.11)

constant mean extrinsic curvature. This is not an obvious choice, but there are proofs that
this is neat, nice, and consistent. For a black hole, the hypersurfaces curve around the
singularity.

For a large class of solutions, Anderson and Moncrief have recent proofs this is kosher.
We have

K =
1

N
∂t(ln

√
q), (5.12)

some signs vary.
This choice tremendously simplifies things, we are left with

Diπ
ij = (. . . )D̃i(D̃

iY j + . . . ) = 0. (5.13)

If we assume spatial compactness or Y falls off at infinity, we get Y i = 0. So we have
simplified the conjugate momenta to be:

πij =
1

16πG
[ϕ−4pij − 2

3
Kϕ2q̃ij

√
q̃]. (5.14)

Here K is the proportional time rate of change of the local volume.
We solved the momentum constraints, p is freely specified provided it satisfies certain

conditions. Now, the Hamiltonian constraint, which is hard. We are left with really 2
independent components in q̃ and in p. We are left with the conformal factor ϕ to determine.
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The Hamiltonian constraint determines it! The Hamiltonian constraint puts the condition
on ϕ:

∆̃ϕ− 1

8
ϕ+

1

12
t2ϕ5 − 1

8

(
q̃ij q̃kℓp

ikpjℓ

q̃2

)
ϕ−7 = 0. (5.15)

This is a second-order elliptic PDE.
Plugging this back into the action, we get (combining everything back together):

I =

(
1

16πG

)2 ∫
[pij ˙̃qij −

4

3

√
q̃ϕ6]d3xdt. (5.16)

With the Hamiltonian constraint implying we can write the conformal factor as a function
of p and q̃, ϕ = ϕ(p, q̃). In our notion of time, that Hamiltonian is very nonlocal. It is
effectively

H =
4

3

√
q̃ϕ6. (5.17)

Due to this nightmarish nonlocality, we don’t know how to put hats on stuff.
(We have been working with a zero cosmological constant Λ = 0, there should be some

contribution from it in ϕ for nonzero Λ.)
In 2 + 1 dimensional gravity, the q2p2ϕ−7 term goes away, and we have a local Hamil-

tonian, and everything’s nice.
This was based on a particular decomposition, we’d like to keep something similar to

the decomposition of π.

5.2 Dirac Quantization

Let’s begin Dirac quantization of the system. We basically impose the constraints at the
quantum level. We have our wave function Ψ[q], so we have

ĤiΨ[q] = 0 (5.18a)

and
ĤΨ[q] = 0. (5.18b)

We use the Schrodinger picture to have

π̂ij = −i δ

δqij
. (5.19)

The momentum constraint smeared by some vector ζi is∫
ζjDi

δ

δqij
Ψ[q] d3x = 0. (5.20)

Integration by parts gives us,∫
(Diζj +Djζi)

δ

δqij
Ψ[q] d3x = 0. (5.21)

By functional Taylor expansion, we have

Ψ[qij +Diζj +Djζi]−Ψ[qij ] = 0. (5.22)

So Ψ is invariant under such coordinate transformations. This is not as easy as it seems.
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Lecture 6.

Spacelike hypersurfaces defined by metric, but in general we don’t know the metric in
quantum gravity, so we’re out of luck. (We are assuming thatM = R×Σ where R is time,
Σ is a spatial 3-manifold, at least in the canonical approach.) Anyways, back to the Dirac
approach.

We’re imposing the constraints as operators on the wave function. We interpret the
momentum constraint

ĤiΨ[q] = 0 (6.1)

as telling us the wave function is invariant under spatial diffeomorphisms. We should be
able to, at least have the urge to assume H̃ is telling us the wave function is invariant
under temporal diffeomorphism but realize that this is meaningless. We’re on a spatial
hypersurfaces, after all!

The DeWitt supermetric

Gijkℓ =
1

2

1
√
q
(qikqjℓ + qiℓqjk − qijqkℓ). (6.2)

This is like a metric of metrics. We have the deformation of a metric δqij have the length

∥δqij∥2 =

∫
Gijkℓδq

ijδqkℓ d3x. (6.3)

This defines the distance on the space of metrics. (The signature of the supermetric is
(−+++++), we take each pair of indices as a single index resulting in a 6-by-6 matrix.)

We introduce

π̂ij = −i δ

δqij
. (6.4)

We plug it into the Hamiltonian constraint, and write:

Ĥ = 16πGGijkℓ
δ

δqij

δ

δqkℓ
+

1

16πG

√
q (3)R. (6.5)

Resist the urge to make the first term a Laplacian. The Ricci 3-scalar (3)R is intuitively a
sort of potential term, when viewed as a function of qij . So then we plug it back into

ĤΨ[q] = 0. (6.6)

This is the Wheeler–DeWitt Equation.
We need an inner product, wave functions alone do not suffice for a quantum theory.

There are 2 obvious thing to try to do.
The first thing, the ordinary Schrodinger picture using the 3-metric∫

Ψ∗Φ [dq] =∞ (6.7)

always since the Hamiltonian constraint, we need to gauge fix the inner product, like a path
integral with some extra symmetry.

x R. P. Woodard, “Enforcing theWheeler-deWitt Constraint the EasyWay”. Class. Quant. Grav.
10 (1993), 483–496.
doi:10.1088/0264-9381/10/3/008

We can think of ĤΨ = 0 as a sort of Klein–Gordon equation, and the correct inner
product there is: ∫

Ψ∗
←→
δ

δq
Φ [dq]. (6.8)
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There is some ambiguity here, we have a number of inner products since δ/δq is nonunique.
We could quantize the Wheeler-DeWitt equation, which is a third quantization. This

creates and annihilates metrics (which correspond to universes), which we do not really
observe.

There is another approach to finding an inner product which Woodard proposes, which
for simple models looks like the Klein-Godon inner product. The wave function encodes
some information about the placement of the spatial hypersurface in the universe, which
has some information about time.

Another technical problem is the first term of Ĥ has two functional derivatives, which
is problematic. We could try to put in some regulator, so the first term looks like:

Ĥ = lim
x→x′

G̃ijkℓ
δ

δqij(x)

δ

δqkℓ(x′)
+ . . . . (6.9)

We need to show the result is independent of regularization. We also need to be conscious
of the Poisson bracket {H,Hi} must be recovered from the commutator [Ĥ, Ĥi] with our
own regularization.

6.1 Perturbative Expansion

The other thing we could try is a perturbative expansion, which is natural if we cannot get
an exact solution.2 We assume the wave functional Ψ satisfies the momentum constraints.

We can do what is roughly the Born–Openheimer approximation, wherein we couple
gravity and matter. (Basic idea of the Born–Openheimer approximation is we have 2
independent processes, e.g., there is some background on which matter moves slowly, but
there is some backreaction.)

Let us write: (
16πGℏGijkℓ

δ

δqij

δ

δqkℓ
+

1

16πGℏ
√
q (3)R+Hm

)
Ψ = 0, (6.10)

where we have the matter Hamiltonian Hm ≈ T00. Let us do a sort of WKB approximation:

Ψ = A exp

(
i

32πGℏ
S0

)
. (6.11)

We can expand in powers of the Planck length. The lowest order expansion is just

−1
4
Gijkℓ

δS0

δqij

δS0

δkℓ
+
√
q (3)R = 0. (6.12)

(This is the Hamilton–Jacobi equation for gravity uncoupled to matter.) So at this level we
have some background that’s fixed and looks classical.

The next order:

iGijkℓ
δS0

δqij

δA

δqkℓ
+

i

2
Gijkℓ

(
δ2S0

δqij δqkℓ

)
A+HmA = 0. (6.13)

If we are clever, we can choose the functional derivative of A to look like:

δA

δqkℓ
∼ “

d

dt
A”. (6.14a)

Remember A is the coefficient for our wave functional Ψ. Explicitly,

A = D[q]Ψ̃, (6.14b)

2A good reference for this subsection is Claus Kiefer [6], Quantum Gravity, third edition, section 5.4.
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choose D such that

i

2
Gijkℓ

(
δ2S0

δqij δqkℓ

)
D + iGijkℓ

δD

δqij

δA

δqkℓ
= 0. (6.14c)

Then,

iGijkℓ
δS0

δqij

δΨ̃

δqkℓ
+HmΨ̃ = 0. (6.15)

This looks a lot like the Schrodinger equation. We have

Gijkℓ
δS0

δqij
“∼” δqkℓ

δT
(6.16)

where T is “time” (we don’t know exactly what this is in quantum gravity). We can be far
more rigorous in certain midisuperspace models.

We can go to higher orders, where we get backreaction, where S0 gets corrections from
S2 (the effects of gravity self-gravitating). Barvinsky has worked out a systematic formalism
using doodles that look like Feynman diagrams.3 It’s not known if the approximation is
renormalizable.

The zeroeth order Eq (6.12) describes how spacetime curves, the first-order corrections
in Eq (6.13) tells matter how to move, the second-order correction tells spacetime curves
due to matter, then the third-order correction tells matter how to react to third-order
corrections, and so on.

We can do cosmology in this formalism. (Halliwell(?) did some old work here.)4 Time
has sort of emerged, which is nice, but this tells us that time emerges when the universe is
approximately classical. (What about in other universes?)

6.2 Strong Coupling Limit

There’s another approximation that has appeal. That is to take ℏG as large (the so-called
“Strong Coupling Approximation”). This might be good to tell us about the small scale
structure of spacetime.5 The leading order contribution in the Wheeler-DeWitt equation is
the first term. This tells u s that the metric “decouples” at each point. To lowest order we
have “almost independent” metrics at each point.

Classically, at each point, the general solution is the Kasner universe

ds2 = −dt2 + e2p1dx2 + e2p2dy2 + e2p3dz2, (6.17)

where, at lowest order, the terms pj are constants satisfying:

p1 + p2 + p3 = 1, (6.18a)

and
p21 + p22 + p23 = 1. (6.18b)

The next order correction treats the pj as slowly-varying terms.

3Although a reference was not given, I believe it is Barvinsky and Kiefer [4].
4I think this refers to Jonathan Halliwell arXiv:gr-qc/9208001, possibly other papers.
5Professor Carlip wrote a review paper with a good discussion of this approximation in §2 of

arXiv:1009.1136.
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Misner called this the Mixmaster universe. There’s a huge literature on this (lookup the
Belinskii-Khalatnikov-Lifshitz [BKL] model). It is conjectured that near the Big Bang, the
universe behaved this way.

At higher-order corrections, the oscillations look like:

. . .

The constraints imply pi > 0, pj > 0 and pk < 0 where i ̸= j ̸= k and i, j, k = 1, 2, 3.

Part II

Loop Quantum Gravity

Lecture 7.

For reduced phase space quantization, we are left with one horrible equation—as opposed
to many horrible equations in the Dirac approach.

There’s also the problem that we chose t = −K. It’s sometimes not the obvious choice
for certain problems, for example the Schwarzschild solution is completely scary. Do we get
different quantum theories with different time slicings? We don’t know, this is kind of an
anomaly problem—is the quantum theory generally covariant in the reduced phase space
approach?

The Dirac approach has a few problems. We need to gauge fix the inner product, but
in practice we don’t know how to do this. Another problem is that the Wheeler-DeWitt
equation has a piece that looks like the product of two functional derivatives at a point,
and this results in a δ(0) contribution. This is a standard problem in quantum field theory,
regularization is needed. We could regulate it in theory as

δ

δg(x)

δ

δg(x′)
→ δ

δg(x)
Kε(x, x

′)
δ

δg(x′)
(7.1)

where Kε(x, x
′) is some regulator invariant under spatial diffeomorphisms, preserves the

Poisson brackets, and becomes a δ function. No one has a proof that results are independent
of how we regulate. It could be possible it makes sense, we just don’t know enough about
functional differential equations.

Even if this all worked out, the problem remains how to make sense of basic variables.
We have physical states be annihilated by the constraints

ĤΨphy = 0. (7.2)

We want a physical operator Ô to map physical states to physical states

ÔΨphy = Ψ′
phy. (7.3)

This requires
[Ĥ, Ô] ≈ 0. (7.4)

We know no operators that do this. There have been proofs that such operators are nec-
essarily nonlocal, which we don’t know how to deal with. There’s been work by some to
make the Hamiltonian constraint “almost local”.
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This is where things stood roughly in the 1980s. There are some simplified models where
the Wheeler-DeWitt equation simplifies, just freeze out degrees of freedom, very simplified
settings. The Wheeler-DeWitt equation becomes an ordinary differential equation.

In the early 1980s, two new approaches emerged:
(1) Loop Quantum Gravity (which sought to simplify the Wheeler-DeWitt equation), and
(2) String Theory (possibly contains quantum gravity).

Then in the 1990s there was a new approach called dynamical triangulations. We’ll cover
these three for the rest of the quarter.

7.1 Loop Quantum Gravity

We’ll begin with gravity in the first-order formulation; i.e., a tetrad/vierbein/frame field
eIµ. The capital Latin indices track the basis vector, the Greek indices track the components
of the vector. We have

gµνeIµe
J
ν = ηIJ . (7.5)

It follows that
ηIJe

I
µe

J
ν = gµν . (7.6)

We have an additional symmetry: local Lorentz symmetry.
Given such a tetrad, we can introduce the covariant derivative

∇µA
I = ∂µA

I + ωµ
I
JA

J , (7.7)

where ωµ
I
J is the spin connection. Spin connections came about when people tried to

introduce the spinor to general relativity. We could demand metric compatibility to specify
the spin connection. The notation gets difficult, but let ∇̃µ be th eordinary covariant
derivative for tensors. The demand is that

∇̃µeν
J + ωµ

I
Jeν

J = 0 (7.8)

determines the spin connection ω in terms of the frame e and Christoffel connection.
We can now do ordinary general relativity with this. So

[∇µ,∇ν ]A
I = Rµν

I
JA

J , (7.9)

where
Rµν

α
βe

I
αeJ

β = Rµν
I
J . (7.10)

We write
AI = eµ

IAµ, (7.11)

and by our specification of the covariant derivative (specifically, the spin connection) permits
us to write the commutator.

The Einstein field equations are derived from the action:

IEH =
1

16πG

∫
|e|eµIeνJRµνIJ d4x, (7.12)

where |e| = det |eµI | =
√
−g is the determinant of the tetrad. We can express R in terms

of the spin connection, computed directly from the commutator, as:

Rµν
I
J = ∂µων

I
J + ωµ

I
Kων

K
J − (µ↔ ν). (7.13)

We can also treat the tetrad and connection as independent variables. This isn’t new:
Palatini showed this holds for the metric and Γ back in the 1930s.
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The variation of the action, when treating tetrad and connection as independent vari-
ables, gives us:

δe : eνIRµνIJ = 0 = RµJ

δω : ∇µ(e(e
µIeνJ − eµJeνI)) = 0.

(7.14)

(The second variation is just the same as ∇total
µ eν

J = 0.) The Wheeler-DeWitt equation
isn’t more interesting, difficult, or simple. But we can do interesting stuff!

We can write this in terms of forms

eI = eµ
I dxµ, (7.15a)

ωI
J = ωµ

I
J dxµ. (7.15b)

We can write down the curvature 2-form

RI
J = dωI

J + ωI
K ∧ ωK

J . (7.16)

The action becomes (up to some sign error):

I = ± 1

64πG

∫
ϵIJKLe

I ∧ eJ ∧RKL. (7.17)

This makes it look neater.
Let us call

BIJ := eI ∧ eJ . (7.18)

Then the action looks like

I =

∫
ϵIJKLBIJ ∧RKL. (7.19)

We impose the condition BIJ = eI ∧ eJ (e.g., BIJ ∧ BKL = eεIJKL). The converse (having
BIJ defined by the condition BIJ ∧ BKL = eεIJKL) is almost true. We then have:

I =
1

64πG

∫ ϵIJKLBIJ ∧RKL︸ ︷︷ ︸
a “BF” theory

+ϕIJKL (BIJ ∧ BKL − eεIJKL)︸ ︷︷ ︸
constraint

 , (7.20)

and the ϕIJKL are Lagrange multipliers. If we didn’t have tje constraint, we’d have a flat
spacetime with a sort of gauge theory living on it.

So writing things in new variables suggests new approaches. Let us try some new
variables.

7.2 Self-Dual 2-Forms

First, we define a ∗ operator on a 2-form:

F ∗
IJ =

−i
2
ϵIJKLF

KL, (7.21a)

F ∗∗ = F, (7.21b)

where F[IJ] = 0 (i.e., F is antisymmetric). So this is a dual of F (there are many notions
of “duality”). We say F is “Self-Dual” if

F ∗ = F, (7.22)

and F is “Anti-Self-Dual” if
F ∗ = −F. (7.23)
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We can write, for an arbitrary 2-form F ,

F±IJ =
1

2

(
F IJ ± F ∗IJ) . (7.24)

We can define a self-dual connection,

Aµ
IJ =

1

2

(
ωµ

IJ − i

2
ϵIJKLωµ

KL

)
. (7.25)

We define the self-dual curvature as:

Fµν
IJ = ∂µAν

IJ +Aµ
I
KAν

KL − (µ↔ ν) (7.26a)

=
1

2
(Rµν

IJ +Rµν
IJ∗). (7.26b)

We complexified, doubling the degrees of freedom, roughly speaking the self-dual and
antiself-dual splits the degrees of freedom.

The Ashtekar–Sen Action is then:

IAS =
1

8πG

∫
eeµIeνJFµνIJ d4x. (7.27)

By treating the self-dual connection as separate [independent] from the tetrad, we get
the Einstein field equations. (There is actually an extra term like ∼ eµIeνJRµν

KL =
ϵIJKLR

IJKL = 0.) The constraints simplify dramatically.
We need to have “Reality Conditions” so we don’t have anything imaginary. Classi-

cally, they are:

ωµ
IJ = Aµ

IJ +Aµ
IJ∗ (7.28a)

−i
2
ϵIJKLωµ

KL = Aµ
IJ −Aµ

IJ∗ (7.28b)

=
−i
2
ϵIJKL(Aµ

IJ +Aµ
IJ∗). (7.28c)

The statement is that

Aµ
IJ −Aµ

IJ∗ =
−i
2
ϵIJKL(Aµ

IJ +Aµ
IJ∗). (7.29)

This is a second-class condition, which relates the real and imaginary parts of the connection.
Given the change of variables to the Ashtekar–Sen action, we can do a 3+1 dimensional

split. We will introduce new indices (Î, Ĵ , . . . = 1, 2, 3) for tetrad indices and (i, j, . . . =
1, 2, 3) for coordinate indices. Let’s look at the components:

Aµ
0L̂ =

1

2i
ϵ0L̂ÎĴAµ

ÎĴ =
1

2i
Aµ

L̂, (7.30a)

Aµ
ÎĴ =

1

2
ϵ0

ÎĴK̂AµL̂. (7.30b)

If we went back to the original spin connection, we find it is related to the extrinsic curvature

ωi
0Î = Ki

Î . (7.31)

We can define

Γi
Î =

1

2
ϵ0

ÎĴK̂ωiĴK̂ , (7.32)
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which is basically the connection on the spatial hypersurface ignoring the embedding. We
do this so we can write the self-dual connection as

Ai
Î = Γi

Î + iKi
Î (7.33)

=

(
Ordinary Connection

On the Slice

)
+ i

(
Extrinsic Curvature

On the Slice

)
We can generalize, letting γ be “some parameter”

A
(γ)Î
i = Γi

Î + γKi
Î (7.34)

where γ is the “Immirzi–Barbero Parameter”. The self-dual connection is really just
a canonical transformation.

Lecture 8.

(Remark: If we can write the constraints in two independent groups, then we can do a
mixture of Dirac quantization and reduced phase-space quantization.)

Last time we ended up with a kind of gauge-like field,

A
(γ)Î
i = Γi

Î + γKi
Î . (8.1)

We can write this gauge-like field in terms of the spin connection as:

A
(γ)Î
i =

1

2
ϵ0ÎĴK̂ωiĴK̂ + γωi

0Î . (8.2)

We can think of this as a canonical transformation. In the ADM formalism, Ki
Î is more or

less the canonical conjugate momentum, and we’re adding some terms involving derivatives
of the tetrad to it.

The next step is slightly dodgy, but makes the math easier. We gauge fix Lorentz-boosts:

etÎ = 0. (8.3)

If we don’t do this, then we get second-class constraints. This may give a different repre-
sentation (there is some evidence of it yielding a different representation6). We can now
define

et0̂ = 1/N (8.4a)

ei0̂ = −N i/N, (8.4b)

whereN is the Lapse function andN i is the shift function both from the ADM formalism.We
have

qij = eiÎe
jÎ , (8.5)

so we can write

gij = qij − N iN j

N2
(8.6a)

= ei0̂e
j0̂ + eiÎe

jÎ . (8.6b)

With this gauge fixing, we recover the ADM decomposition of the metric.

Notation 1. Let’s define
Ẽi

Î
:=
√
qeiÎ . (8.7)

It is a tensor density, and it is a triad on a spatial hypersurface.

6Unfortunately, I didn’t ask for references on this.
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Given all of this, we can go back to the Einstein–Hilbert action, do all the computations,
we find:

I =
1

8πG

∫  1

γ
Ai

Î d

dt
Ẽi

Î
− iA0ÎG

Î + iN iVi −
1

2

N
√
q
S︸ ︷︷ ︸

constraints

 d3x dt. (8.8)

If we didn’t impose our gauge-fixing condition, we’d have a more complicated constraint
algebra and one more constraint. Now, let us examine these constraints:

(1) We have GÎ = DiẼ
iÎ where Di is the gauge covariant derivative treating this as a

gauge theory.

(2) Vj = Ẽi
Î
Fij

Î where Fij
Î = ∂iAj

Î − ∂jAi
Î + ϵÎĴK̂AiĴAjK̂ . (This should ring a bell

as the field strength tensor for a nonabelian gauge theory.) Observe these two do not
involve the Immirzi parameter γ directlry.

(3) The remaining constraint is a monster:

S = ϵÎĴK̂Ẽi
Î
Ẽj

Ĵ
FijK̂ − 2

(
1 + γ2

γ2

)
Ẽi

[Î
Ẽj

Ĵ]
(A

(γ)Î
i − Γ Î

i )(A
(γ)Ĵ
j − Γ Ĵ

j ). (8.9)

The factor of A
(γ)Î
i − Γ Î

i should remind us of the extrinsic curvature.

Let us consider the Poisson brackets of quantities.

{Ẽi
Î
(x), A

(γ)Ĵ
j (x′)} = −8πGγδÎ

Ĵ δ̃(3)(x− x′). (8.10)

If we look at this as a nonabelian gauge theory, the Poisson bracket looks like an electric

field and potential. The constraint DiẼ
iÎ = GÎ looks like Gauss’s law.

It looks like the physical phase space of an SU(2) gauge theory. We’re then imposing
two additional constraints, and calling the result quantum gravity. The natural thing to do

is treat the A
(γ)Ĵ
j as positions and the Ẽi

Î
as momenta.

If we work at GÎ , it tells us the wave functions are gauge invariant, the V i constraints
generate spatial diffeomorphisms, and the S is the Hamiltonian constraint. We have:

S = ϵÎĴK̂Ẽi
Î
Ẽj

Ĵ
FijK̂︸ ︷︷ ︸

scalar curvature term

− 2

(
1 + γ2

γ2

)
Ẽi

[Î
Ẽj

Ĵ]
(A

(γ)Î
i − Γ Î

i )(A
(γ)Ĵ
j − Γ Ĵ

j )︸ ︷︷ ︸
the π2 term

. (8.11)

The π2 term is ugly since the Γ term depend on E, so we have a constraint with quadratic
terms in E.

There is a trick here, discovered originally by Thiemann, called the Thiemann trick,
where we represent the ugly term in terms of nested Poisson brackets. So it is possible to
make it really pretty.

Let’s forget the Hamiltonian constraint for the time being. Let’s try to solve the other
constraints, beginning with the Gauss’s Law constraint. The constraints

GÎ = 0 (8.12)

implies the wave functionals Ψ are gauge-invariant. We will write

A = AÎ
i dx

i τÎ (8.13)

where τÎ are the generators of SU(2) or SO(3) depending on gauge, let g ∈ SU(2) then the
A field transforms like:

A→ g−1 dg + g−1Ag. (8.14)
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(For electromagnetism, g−1Ag = g−1gA = A and g−1 dg = dΛ.) Recall the field strength
2-form is then,

F = dA+A ∧A. (8.15)

We see, from d(gg−1) = 0 we have,

d(g−1) = −g−1 (dg)g−1. (8.16)

In particular,

d(g−1 dg + g−1Ag) = −g−1 dg g−1 dg − g−1 dg g−1Ag + g−1 dAg − g−1A dg. (8.17)

Then applying this and Eq (8.14) to the field strength 2-form gives us,

F → F ′ = d(g−1 dg + g−1Ag) + (g−1 dg + g−1Ag) ∧ (g−1 dg + g−1Ag) (8.18a)

= g−1 dAg + (g−1Ag) ∧ (g−1Ag) (8.18b)

= g−1(dA+A ∧A)g (8.18c)

= g−1Fg. (8.18d)

This isn’t terribly surprising, it’s basic differential geometry.
The kinetic term is

Tr(F 2) = F Î
µνF

µν

Î
(8.19)

for the gauge field. It’s invariant under gauge transformations.
Now we would like to construct a basis of gauge invariant quantities (easier said than

done). But we can consider the parallel transport of a gauge field on a cloed curve on a
surface, the holonomy is gauge invariant! We have the parallel transport,

dvÎ

ds
+

dxi

ds

(
Ai

ÎϵK̂
Î
Ĵ

)
vĴ = 0. (8.20)

This is the equation for parallel transport, it’s basic differential geometry.7 The result is
that

vÎ(s) = U Î
Ĵ
(s, s0)v

Ĵ(s0), (8.21)

where we have the path-ordering exponential,

U Î
Ĵ
(s, s0) = P exp

−∫ s

s0

Ai
K̂ ϵÎ

ĴK̂︸ ︷︷ ︸
generators

dxi

 . (8.22)

We can generalize to any representation of SU(2), just replace the ϵÎ
ĴK̂

“generators” factor
with τK̂ .

This is more general than curvature, we’re not doomed to infinitesimal nightmares.
We see, taking care with ordering due to noncommutativity, that:

d

ds
U(s, s0) = −A(s)U , (8.23)

and similarly,
d

ds0
U(s, s0) = −UA(s0). (8.24)

7See, e.g., §13 of my notes on general relativity http://pqnelson.github.io/assets/notebk/GR.pdf.
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Let Ũ = g(s)−1Ug(s0), so we have:

d

ds
Ũ = −g−1(s)

dg(s)

ds
Ũ − g−1(s)AUg(s0) (8.25a)

=

(
−g−1Ag − g−1 dg

ds
g

)
Ũ (8.25b)

= −Ã Ũ . (8.25c)

We read this backwards, when

A→ g−1 dg + g−1Ag, (8.26)

we simply have
U(s, s0)→ g−1(s)U(s, s0)g(s0). (8.27)

Note: redo the computations starting from Eq (8.23) for enlightening insight.
In particular, for a closed curve C, we find Tr(U(s, s0)) is gauge invariant. This is the

Wilson loop, and it gives us a complete set of gauge invariant variables for a gauge theory.
There is one problem with this, the Wilson loops give an overcomplete set of variables

(i.e., they’re not all linearly independent of each other, due to the Mandelstam identities):

UC1
UC2

= UC1◦C2
+ UC1◦C−1

2
, (8.28)

where C1, C2 are closed curves sharing a point, as doodled below:

•
C1

C2

There’s a nice basis called the “Spin Network Basis”, and we can claim to solved 3 of
the constraints of quantum gravity.

Lecture 9.

Consider a wave functional Ψ[φ(x)] in a Schrodinger type picture in quantum field
theory. Consider infinitesimal deformations of the field

Ψ[φ(x) + ε(x)] = Ψ[φ(x)] +

∫
δΨ

δφ
(x1)ε(x1) d

nx1 +O(ε2). (9.1)

If the field is invariant under φ→ φ+ ε̃, then

Ψ[φ+ ε̃ ] = Ψ[φ], (9.2)

and moreover ∫
δΨ

δφ
(x1)ε̃(x1) d

nx1 = 0. (9.3)

This is useful for computing vacuum expectation values.
Suppose we have a constraint. For us, we have the Gauss Law constraint

DiẼ
iÎ = ∂iẼ

iÎ + ϵÎĴK̂AiĴ Ẽ
i
K̂

= 0, (9.4)
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where in the Schrodinger picture we have,

ẼiÎ = −8πγGNℏ
δ

δAiÎ

. (9.5)

The constraint is linear in functional derivatives. What we can do is look at the integral of
the constraint against a test function,∫

λÎDiẼ
iÎ dnx = 0. (9.6)

If this is true for arbitrary λÎ , then integration by parts∫
λÎDiẼ

iÎ dnx = 8πGNℏγ
∫
DiλÎ

δ

δAiÎ

dnx. (9.7)

Our constraint is then, when applied to a wave functional,

8πGNℏγ
∫
DiλÎ

δ

δAiÎ

dnxΨ[A] = 0. (9.8)

This is the first term in a Taylor expansion

Ψ[Ai
Î +Diλ

Î ] = Ψ[Ai
Î ]. (9.9)

We can also have gauge transformations not built up from infinitesimal transformations
(e.g., time reversal) called “Large Gauge Transformations”.

We get to the Wilson line (a.k.a., the parallel propagator), we have the holonomy

U Ĵ
K̂

= P exp

[
−
∫
C

A Ĵ
i ϵÎ

Ĵ
K̂
dxi
]
, (9.10)

or suppressing indices and letting τÎ be the generators of the gauge algebra,

U = P exp

[
−
∫
C

A Î
i τÎ dx

i

]
. (9.11)

Observe this transforms under change of “coordinates” as

U → g−1(s2)U g(s1). (9.12)

We wish to construct invariants, so we construct closed loops then take the trace of the
holonomy U over the loop. This is an overcomplete set of variables.

•

j1

j2

j3

The way out is to consider the intersection, as doodled to the
right. We wish to consider this in detail. Give each edge of the graph
depicting the intersection a representation of SU(2). We assign the
vertex a Clebsch-Gordon coefficient. If we generalize this to n-edges
meeting at a vertex, we can use an intertwiner instead of a Clebsch–
Gordon coefficient. For SU(2), we have a neatway to combine things
as vertices:

• • •“=”

This works for SU(2), it may not necessarily work for an arbitrary gauge group. So in short:
(1) At each node, we have an intertwiner;
(2) At each edge, we have a representation of SU(2).
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•

•
•

•
•

•

•

•

The spin network (generically doodled to the left) gives a com-
plete (but not overcomplete) basis of states. Loop quantum gravity
theorists like to say a spin network is a state. What they mean is:
the spin network is a function of the connection A, which is all a
state is in quantum gravity. A spin network eats in a value of A and
spits out a complex number. One could use this for computation
in, e.g., QCD (this is group field theory).

We don’t need a smooth connection, we can generalize the con-
nection so it gives Wilson lines along finite parts of space (it could
be only where the edges are in fact). If we take the space of all

connections modulo gauge transformations, and complete it (so it’s a Hilbert space), then
that’s the Hilbert space we use.

Since a spin network is a state, we should probably define an inner product between two
spin networks. We should consider the usual way to define the inner product on the Hilbert
space just described as something like

⟨Ψ | Φ⟩ ∼
∫
A/G

Ψ∗[A]Φ[A] [dA]. (9.13)

This is the only gauge-invariant inner product. We can get close to a delta function,
specifying geomtries down to the Planck length, using weave states.

Note: the spin networks doodled below,

• • • •̸=

are distinct, since the lines are Wilson lines, the integral changes.

Lecture 10.

We need the spatial topology to not change, otherwise we can end up with a number of
baby universes (“polymer topology”).

Let us consider the simplest spin network, we need 2 nodes and 3 edges. (If we had
2 edges, then we would obtain the identity spin network.) We don’t have spin 0, as the
propagator would be the identity.

• •

1/2

1/2

1

c1

c2

c3

For each of these lines we have the Wilson line

U = P exp[−
∫
A]. (10.1)

We have three Wilson lines Um1
1 n1

, Um2
2 n2

, and Um3
3 n3

. Conceptually, the U ’s tell spin-
1/2 objects rotate in spin space. We have m1 = 1/2,−1/2 for spin up and spin down
(respectively). We see m2 also describes a spin-1/2 object, but m3 describes a spin-1 object
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with possible values m3 = −1, 0,+1. We can now use the Clebsch–Gordon coefficients
⟨j m | j1m1 , j2m2⟩ and find∑

m1,m2,m3
n1,n2,n3

Um1
1 n1

Um2
2 n2

Um3
3 n3

⟨1m3 |
1

2
m1

1

2
m2⟩⟨1n3 |

1

2
n1

1

2
n2⟩, (10.2)

which is a function of A.

10.1 Area Operator

We take a surface Σ, we can ask “What is the area of the surface?” Suppose we have some
spin network that “goes through” our surface Σ:

Σ

•
•

•
•

•

•
•

We won’t consider an edge of the spin network “grazing” the surface, or lies inside the
surface: we care about puncturing edges.

We will only really consider a simple example choosing a surface where x3 = 0, the area
of the surface would be classically

A =

∫ √
(2)gd2x. (10.3)

We see
(2)g = g11g22 − 2(g12)

2 = Ẽ3
Î
Ẽ3Î . (10.4)

So the area is

A =

∫ √
Ẽ3

Î
Ẽ3Îd2x. (10.5)

Consider a more general surface with coordinates σ1, σ2. Then our considerations change
by

Ẽ3
Î
→ ϵijk

∂xi

∂σ1

∂xj

∂σ2
Ẽk

Î
. (10.6)

In the classical arena, the criteria for a “small region” is not really well-defined; in the
quantum arena, we just require a single piercing of a spin network with the surface (as
doodled in the margin). We can turn this now into an operator

•

j

ẼÎ = −8πGNγ

∫
ϵijk

∂xi

∂σ1

∂xj

∂σ2

δ

δAÎ
k

dσ1dσ2. (10.7)

We need to consider δU/δAÎ
k. If we didn’t have path-ordering, then this would be trivial.

But we must be careful, since things do not commute. Consider the path doodled below:

•

•

s

s1

s2

)((
)

{s± ε
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We have

U(s2, s1) = U(s2, s)U(s, s1) (10.8a)

= U(s2, s+ ε)U(s+ ε, s− ε)U(s− ε, s1). (10.8b)

If ε is small enough, we have

δ

δAÎ
i (s)
U(s2, s1) = U(s2, s)

(
−τÎ

dxi

ds

)
U(s, s1). (10.9)

More generally,

δ

δAÎ
i (x)
U(s2, s1) =

∫
δ(3)(C(s)− x)U(s2, s)

(
−τÎ

dxi

ds

)
U(s, s1) ds, (10.10)

and is zero if x does not lie on the curve C. We now see that

EÎU(s2, s1) = 8πγGN

∫
ϵijk

∂xi

∂σ1

∂xj

∂σ2

∂xk

∂s
δ(3)(C(s)− x)U(s2, s)τÎ U(s, s1) dσ

1dσ2ds.

(10.11)
We see that ∫

ϵijk
∂xi

∂σ1

∂xj

∂σ2

∂xk

∂s
δ(3)(C(s)− x) dσ1dσ2ds

is called the “oriented intersection number” (it’s ±1 if C(s) intersects Σ, and 0 otherwise).
The moral of the story is that the oriented intersection number I(C,Σ) is used to find

EÎ U(s2, s1) = 8πGNγI(C,Σ)U(s2, s)τÎ U(s, s1), (10.12)

where C(s) is the point of intersection.
Lets consider

EÎE
ÎU(s2, s1) = (8πGNγ)

2U(s2, s)τÎτ
Î U(s, s1). (10.13)

We see for SU(2), τÎτ
Î is the quadratic Casimir (it’s J2 in quantum angular momentum),

so we can plug in its eigenvalue j(j + 1) giving us

EÎE
ÎU(s2, s1) = (8πGNγ)

2j(j + 1)U(s2, s1), (10.14)

assuming there is an intersection. We can write a spin network state | s⟩, so

EÎE
Î | s⟩ =

∑
intersections

(8πGNγ)
2j(j + 1) | s⟩. (10.15)

We can now define the area operator

Â =
∑

small regions
of Σ

√
EÎE

Î . (10.16)

Classically we had

A =

∫
(E3

Î
E3,Î)1/2, (10.17)

so we see a direct connection really, it’s a sensible definition. Given this area operator, we
see that when it acts on a spin network that

ÂΣ | s⟩ =
∑

intersections

8πGNγ
√
j(j + 1) | s⟩. (10.18)
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The spetrum of the area operator is discrete. The spacing between high j’s is smaller than
the spacing for low j’s. There are some attempts at number theoretic explanations.

The volume operator can be defined similarly using the product of 3 Ẽ factors instead
of 2. Its construction is horrible. The area operator has contributions from edges, but the
volume operator has contributions from vertices “with enough edges” (4 edges at a node
should be viewed as dual to a tetrahedron, 3 edges has area but no volume). At this point,
the volume spectrum is not well understood.

If we have a cubic network, if we have too many edges, then the metric “looks flat”.
There are angle operators with fairly odd properties. One fairly old reference but a beautiful
introduction to these geometric operators:

x C. Rovelli and P. Upadhya, “Loop quantum gravity and quanta of space: A Primer”.
arXiv:gr-qc/9806079.

Lecture 11.

The Hamiltonian constraint gives surface deformations. So far we have not looked at
the momentum or Hamiltonian constraints. It’s like Einstein’s field equations are missing.
We have

Vi = F Î
ijẼ

j

Î
= 0. (11.1)

Let us first consider a trick useful in many circumstances. Consider

ξiF Î
ij = ξi(∂iA

Î
j − ∂jAÎ

i + ϵÎM̂N̂A
iM̂
AjN̂ ) (11.2a)

= ξi∂iA
Î
j − ∂j(ξiAÎ

i ) + (∂jξ
i)AÎ

i + ϵÎM̂N̂ξiA
iM̂
AjN̂ (11.2b)

= ξi∂iA
Î
j + (∂jξ

i)AÎ
i︸ ︷︷ ︸

change of A under an
infinitesimal change of

coordinates

−Dj(ξ
iAÎ

i ) (11.2c)

= δξA
Î
i︸ ︷︷ ︸

Lie derivative

−Dj(ξ
iAÎ

i ). (11.2d)

The moral is that a vector contracted with the field strength tensor looks liek a covariant
derivative and a diffeomorphism (gauge transformation). So we have∫

ξiVi d
3x ∼

∫
(−Di(ξ

iAÎ
i ) + δξA

Î
i )

δ

δAÎ
i

d3x, (11.3a)

which acts on fields like:
A→ A−Dε+ δξA, (11.3b)

where εÎ = ξiAÎ
i . This is exactly analogous to the statement in quantum mechanics that p̂

generates translations in position.
We have these spin network states. We would like them to be invariant under gauge

transformations. Forget about position and think about a spin network in the graph theo-
retic notion of a network. For instance consider the two spin networks doodled below:

• • • •

j1

j2

j3

j1

j2

j3
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We now treat them as the same spin network (despite in our earlier treatment, we would
have treated them as distinct spin networks). That is to say, before we would have found
the inner product of these two spin states would vanish, but now we will find their inner
product is unity (i.e., 1). There is an obvious problem here, though: spin networks are
not “functions” of connections since thre is no longer any background space. This is fine
on the one hand, but it’s harder to find how to get physics from this. The trick is to
define a diffeomorphism invariant notion of what a surface is, so whn we perform some
diffeomorphism of a surface, and the surface Σ is punctured by a spin network, dragging
the surface Σ would cause a diffeomorphism in the spin network; i.e., everything is dragged
along.

•

• •

Σ

Here we need some extra parameters, e.g., if we had a scalar field, there would be some
extra information that needs to be preserved under diffeomorphisms. (This is what we do
in practice.)

Thus far we have left out the Hamiltonian constraint, but for agood reason: no one
knows how to deal with it. Recall it looks like

S ∼ FEE + (1 + γ2)(big mess). (11.4)

Here the Hamiltonian is quadratic in functional derivatives. There are some tricks that
may possibly work; e.g., we can see the volume operator looks like V ∼ E3, so we have the
Poisson bracket {V,A} ∼ E2, which permits us to rewrite the first term as

FEE ∼ F{V,A}. (11.5)

•

Recall, to get F we found the path ordered exponential integral (a.k.a.,

the holonomy) Pe−
∫
A ∼ 1 +

∫
F + · · · But to do that for a spin network,

we work around a node and take the dashed line (doodled to the right) to go
to the node (its length vanishing). But diffeomorphism invariance allows us
towiggle the line, so its vanishing no longer really matters. The regulation
becomes independent of the regulator.

As far as the “big mess” term in the Hamiltonian constraint, Thomas
Thiemann has done a lot of work trying to simplify it.

t = 1

t = 0

Another problem is that the Hamiltonian acts node by
node, so it may be too local (resulting in nothing propagat-
ing).

It may be these are not problems, we just don’t know.
We’d need to know information about the solution to the
Hamiltonian constraint.

Spin foams may give an alternative point of view to time
evolution of spin networks. If we want to consider how a spin
network changes, we can change the spin label or the inter-
twiners (which is hard) or we can add edges (or remove edges).
We have several ingredients: the node of a spin network is pro-
moted to an edge in the spin foam, the edge becomes a plane,
and we need some way to deal with the vertex in the spin foam.
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Recall the notion of duals to simplices. In two dimensions,
the dual is doodled to the left in red, and in three dimensions
it is generalized accordingly. The trick is for the spin foam, we
have a sort of dictionary identifying various things to arious
other parts of the dual 4-simplex. The use of a spin foam is

to give transition amplitudes to evolving spin networks.
As a closing remark, there are field theories which use group elements on the edges of

its Feynman diagrams, but these appear to be “dual” to spin foams—so in a sense, gravity
“emerges”.8

8I believe this remark refers to group field theory.
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Part III

String Theory

Lecture 12.

References for loop quantum gravity.
x About Spin Foams

x J. C. Baez, “An Introduction to Spin Foam Models of BF Theory and Quantum
Gravity”. Lect. Notes Phys. 543 (2000), 25-93; arXiv:gr-qc/9905087
doi:10.1007/3-540-46552-9 2

x A. Perez, “Spin foam models for quantum gravity”. Class. Quant. Grav. 20
(2003) R43; arXiv:gr-qc/0301113
doi:10.1088/0264-9381/20/6/202

x Group Field Theory
x D. Oriti, “The Group field theory approach to quantum gravity”. arXiv:gr-qc/0607032.

x Critique of Loop Quantum Gravity:
x H. Nicolai and K. Peeters, “Loop and spin foam quantum gravity: A Brief guide

for beginners”. Lect. Notes Phys. 721 (2007) 151-184; arXiv:hep-th/0601129.
doi:10.1007/978-3-540-71117-9 9

x Covariant Canonical Quantization
x A. Ashtekar, L. Bombelli and O. Reula, “The Covariant Phase Space of Asymp-

totically Flat Gravitational Fields”. In Mechanics, Analysis and Geometry: 200
Years After Lagrange, pp.417–450, Elsevier, 1991.
doi:10.1016/B978-0-444-88958-4.50021-5.

12.1 String Theory

A very brief introduction to string theory, but we’ll focus on its relevance to gravity. There
are several points to consider
(1) Closed loops have a massless spin-2 excitation (“graviton”)
(2) Strings propagate only in a spacetime satisfying the Einstein field equations (plus

some negligible corrections)

(Any theory with self-interacting spin-2 massless excitations is a hint that gravity is in the
game.)

(3) Background spacetime of the second point is equivalent to a coherent state of excita-
tions of the first point.

Review of classical spin-2
“gravitons”

Let us examine the first point. We have the basic field be some tensor with two indices
hµν and the field equations look like:

□hµν + (terms involving ∂ρh
ρσ) = Tµν . (12.1)

The most general result is that we end up with a spin-2 part, a vector (spin-1) part and a
scalar (spin-0) part. We need these extra (vector and scalar) parts vanish, which is a gauge
choice (analogous to a spin-1 field □Aµ + k∂µ∂νA

ν = Jµ requires ∂µJµ, otherwise we do
not have electromagnetism). The gauge invariance for us is

hµν → hµν + ∂µξν + ∂νξµ (12.2)

which demands
∂µT

µν = 0 (12.3)

for consistency. We can choose gauge ∂ρh
ρσ = 0 (Lorenz gauge, Harmonic gauge, de

Donder gauge, Fock gauge, Harmonic gauge, Feynman gauge, Lorenz gauge, etc.). The
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reason harmonic is sometimes we write □Xµ where Xµ is some parametrized version of the
coordinates which individually transform as scalars (and □ uses derivatives with respect to
the parameters).

For consistency, after choosing the gauge, we add contributions of order h2 to the stress-
energy tensor to the right-hand side

□hµν = Tµν + T (h)
µν (12.4)

but then we will need to add cubic interactions, and then quartic interactions, etc. Deser
showed (reprinted as arXiv:gr-qc/0411023), using an incredibly clever choice of variables,
the series terminates. Damour and Henneaux (arXiv:hep-th/0007220 and arXiv:hep-th/0009109)
used clever arguments to show there are some extra terms using cohomological techniques.
This work done by Deser, Damour and Henneaux, are entirely classical, but there are some
soft graviton theorems.

Strings, WorldsheetLet’s start with string theory, we will start by talking about strings. Open strings trace
out a 2-dimensional surface with intrinsic coordinates (σ, τ) = (σ0, σ1). We can write the
4-coordinates of the surface in terms of σ and τ .

x

t

•(σ0, σ1)

We can model interactions using pant diagrams, for example:

closed closed

closed

open open

open

open open

closed

These are the only possible interactions. These are, of course, in a fixed background. The
common statistic is that there are 10500 possible backgrounds. We write the metric for this
background as Gµν and the induced metric on the worldsheet is,

hab = Gµν
∂Xµ

∂σa

∂Xν

∂σb
. (12.5)

The generalization of the action for a world line is the area of the worldsheet, Nambu–Goto Action
Polyakov Action

I =
−1
2πα′

∫ √
−hd2σ. (12.6)

This is the Nambu–Goto action.
Quantizing the Nambu–Goto action turns out to be quite difficult, which we should

expect with any Lagrangian involving the squareroot of quadratic terms. This leads us to
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consider the generalization of this action, the Polyakov action, which requires us to use a
new induced metric γab,

I =
−1
4πα′

∫
γab∂aX

µ∂bX
νGµν

√
−γ d2σ. (12.7)

Classically this is equivalent to the Nambu–Goto action, where the metric γ behaves as a
Lagrange multiplier (since its derivatives do not appear in the action). We see varying the
action with respect to γ yields

∂aX
µ∂bX

νGµν −
1

2
γabγ

cd∂cX
µ∂dX

νGµν = 0. (12.8)

We can solve this equation for γab to write the induced metric as

γab = 2f(σ0, σ1)∂aX
µ∂bX

νGµν (12.9)

where
1

f(σ0, σ1)
= γcd∂cX

µ∂dX
νGµν . (12.10)

This action has Weyl symmetry,
γab → Ω(σc)γab, (12.11)

where Ω is everywhere positive. We see that the Polyakov action may be rewritten as,

I =
−1
4πα′

∫ √
−γ

f(σ0, σ1)
d2σ. (12.12)

Taking advantage of the fact f is everywhere positive, we see we can classically recover
the Nambu–Goto action by the Weyl symmetry transformation γab → γab/

√
f . Polchinski

proved the two actions are the same quantum mechanically. We can look at the string
worldsheet as fundamental, then view theXµ living on the worldsheet, and four-dimensional
spacetime “emerges”.9

Lecture 13.

Today we will discuss only a crude quantization of strings, just to see how a picture of
quantum gravity might look like.

We will first consider an open string in flat Minkowski spacetime. Its action,

I =
−1
4πα′

∫
γab∂aX

µ∂bX
νηµν
√
−γ d2σ. (13.1)

The equations of motion are roughly

∂a∂aX
µ ∼ 0. (13.2)

We need to impose boundary conditions; the two obvious ones are Neumann na∂aX
µ = 0 at

the endpoints (where na is the normal vector at the endpoints), and the DirichletXµ = fixed
at the endpoints.

Observe the graviton has no such boundary conditions, and open strings cannot describe
massless particles of spin greater than 1, so we must use a closed string for the graviton.10

We have 3 gauge invariances (2 diffeomorphisms, 1 Weyl invariance). This is simple enough
that we can choose 3 gauge conditions (technically we should verify the consistency with
the constraints, but it doesn’t get to the interesting point):

9Ed Witten’s “Reflections on the Fate of Spacetime” (Physics Today, April 1996, pp.24–30) argues this
heuristically; Nick Huggett and Christian Wüthrich’s “Out of Nowhere: The ‘emergence’ of spacetime in
string theory” (arXiv:2005.10943) reviews this general subject.

10For more on open strings, see Carlo Angelantonj and Augusto Sagnotti’s review article
arXiv:hep-th/0204089.
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(0) Define X± = (X0 ±X1)/
√
2 (observe: this breaks Lorentz invariance),

(1) Choose X+ = τ “light-front coordinates” (or “light-cone coordinates” or “light-cone
gauge”),

(2) Choose ∂σγσσ = 0, and
(3) Choose det(γab) = −1.

These choices have no deep physical meaning, they just simplify the mathematics. The first
two gauge conditions (X+ = τ and ∂σγσσ = 0) deal with the diffeomorphisms, whereas the
last gauge condition (det(γab) = −1) deals with Weyl invariance. Before going further, we
use the notation

X̄− =
1

ℓ

∫ ℓ

0

X− dσ (13.3)

for the center-of-mass for the X− coordinate.
Plugging these choices into the action gives us,

I =
−1
4πα′

∫∫ [
γσσ(2∂τ X̄

− − ∂τX
′
∂τX

′
)

− 2γστ (∂σY
− − ∂τXi∂σX

i)

+
1

γσσ
(1− γ2στ )∂σXi∂σX

i

]
dσdτ (13.4)

where i = 2, . . . , D and X− = X̄− + Y −.
By varying the action with respect to Y − gives us the equations of motion

∂σγστ = 0. (13.5)

Observe, since Y − doesn’t appear in the action with a time derivative, it acts like a Lagrange
multiplier. Since γστ = 0 at the boundary, and ∂σγστ = 0 at the boundary, it follows that
γστ = 0 everywhere. This simplifies the action to two pieces

I =
−1
4πα′

∫∫ [
γσσ(2∂τ X̄

− − ∂τX
′
∂τX

′
) +

1

γσσ
∂σX

i∂σX
i

]
dσdτ. (13.6)

We’ve eliminated X+ and Y −, so roughly speaking we have D − 2 components. The
transverse fluctuations are described by the second term, the motion of the center-of-mass
is described by the first term. We write for the first term’s momentum,

p− =
−ℓ
2πα′ γσσ = −p+, (13.7a)

and the second term’s momentum,

πi =
p+

ℓ
∂τX

i. (13.7b)

We see the first term in the action Eq (13.6) is just the relativistic particle, and the second
term is just a harmonic oscillator. We can now write,

H =
ℓ

4πα′p+

∫ [
2πα′(πi)2 +

1

2πα′ (∂σX
i)2
]
dσ (13.8)

We see

∂τp
+ =

∂H

∂X̄− by Hamilton’s equations (13.9a)

= 0 (13.9b)
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hence p+ is a constant of motion. We can choose units ℓ/(2πα′p+) = 1.
We now want to quantize it, we see that X̄− and p+ are conjugate variables, so

[X̄−, p+] = i. (13.10)

We can now write

Xi(σ, τ) = X̄i +

(
pi

p+

)
τ︸ ︷︷ ︸

arbitrary choice
makes life

easier

+ i
√
2α′

∑
n ̸=0

1

n
αi
ne

−iπnτ/ℓ cos
(πnσ

ℓ

)
︸ ︷︷ ︸

just a Fourier series expansion for X

(13.11)

If we plug this in and find the conjugate momentum, we find the commutation relations

[X̄i, pj ] = iδij , (13.12)

and similarly
[αi

m, α
j
n] = mδijδ0,m+n. (13.13)

This shouldn’t be too surprising, αi
−n = (αi

n)
† for X to be real. (This should be familiar:

it is a simple harmonic oscillator.)
Let’s look at the states of the string, there is a vacuum | 0, k⟩ with

p+ | 0, k⟩ = k+ | 0, k⟩ (13.14a)

pi | 0, k⟩ = ki | 0, k⟩ (13.14b)

αi
m | 0, k⟩ = 0 for m ≥ 0. (13.14c)

We basically have a bunch of harmonic oscillators.
Now, we can work out the Hamiltonian, and we will find,

H =
1

2p+
(pi)2 +

1

2p+α′

∞∑
n=1

αi
−nα

i
n + A︸︷︷︸

constant, zero-point energy

(13.15)

This is just the harmonic oscillator Hamiltonian. The constant term is thus

A = (D − 2)

∞∑
n=1

1

2
n (13.16)

As everyone knows
∞∑

n=1

n =
−1
12
. (13.17)

There are two ways to see this. The first way is to use the Riemann zeta function ζ(s) =∑∞
n=1 n

−s. We analytically continue it, and its value at s = −1 is ζ(−1) = −1/12.
The second way, the physicist’s way, is to consider

∞∑
n=1

ne−εn = − d

dε

∞∑
n=1

e−εn = − d

dε

(
e−ε

1− e−ε

)
=

1

ε2
− 1

12
+O(ε). (13.18)

Being physicists, we throw away the divergent part, then take ε→ 0.
Either way, we plug this into our Hamiltonian, we find:

H =
1

2p+
(pi)2 +

1

2p+α′

∞∑
n=1

Nn −
D − 2

24

= p−
(13.19)
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since p− generates time translations and we chose X+ = τ . We can use creation operators
on the vacuum which gives excited states on the string. We can ask what is the value for
the mass squared (since mass squared is a Lorentz invariant quantity),

m2 = pµp
µ = 2p+p− − (pi)2

=
1

α′

(
N − D − 2

24

)
(13.20)

This means for the states of the string, N = 0 (vacuum) has m2 < 0, so it’s Tachyonic
(which is bad!). For N = 1,

m2 =
1

α′

(
1− D − 2

24

)
(13.21)

and the states are just αi
−1 | 0, k⟩.

Lorentz invariance requires m2 = 0, which requires

D − 2

24
= 1 =⇒ D = 24 + 2 = 26. (13.22)

We can use the Chan–Paton generators to do some fancy tricks.

Lecture 14.

Now the massless state for the open string αi
−1 | 0, k⟩ acting on the vacuum, this

corresponds to Ai (i = 2, . . . , D). This either is a massless field, or we’ve broken Lorentz
invariance.

For the closed string, the procedure is pretty much the same. We have the Fourier
expansion be,

Xi = X̄i +

(
pi

p+

)
τ + i

√
α′

2

∞∑
n ̸=0

[
αi
n

n
e−i2πn(σ+τ)/ℓ +

α̃i
n

n
e−i2πn(σ−τ)/ℓ

]
. (14.1)

If we’re fixing the endpoints, the modes obey this boundary condition. If we’ve got a closed
string, then the waves can propagate.

Now, we find the mass squared as,

m2 =
2

α′

(
N + Ñ + 2

(
2−D
24

))
. (14.2)

There are two number operators now. There is an extra symmetry, the zero-point for σ is
arbitrary. Working through the constraints we find that,

P = −
∫
πi∂σX

i dσ = −2π

ℓ
(N − Ñ) = 0. (14.3)

For the excited state above the vacuum,

αi
−1α̃

j
−1 | 0, 0, k⟩ m2 =

2

α′

(
2 + 2

(
2−D
24

))
(14.4)

we see m2 = 0 if D = 26.
String spectrum:

Gij graviton
Φ dilaton
Bij axion

Since α, α̃ are not symmetric, we can break their product up into a symmetric traceless
part (which transforms as a spin-2 particle) Gij , the trace which is just a scalar Φ called the
dilaton, and there is also the antisymmetric part Bij (sometimes referred to as the axion).
The axion acts like a sort of gauge potential,

Bij → Bij + ∂iΛj − ∂jΛi. (14.5a)
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The analog of the field-strength tensor would be,

Hijk = ∂iBjk + ∂jBki + ∂kBij . (14.5b)

This is the string spectrum (or particles present) in our action.
Now, let’s look at a string interaction. We will examing the asymptotic behaviour of

incoming and outgoing strings, something like:

closed closed

closed

−→

Consider the metric of a 2-dimensional cylinder, labeling the height with the r coordinate,

ds2 = e2σ(dr2 + dθ2) (14.6)

Let z = exp(−r + iθ) and z̄ = exp(−r − iθ), then as r →∞ we have z → 0 and z̄ → 0. We
similarly find, as r → 0 that z → exp(+iθ) (that is, z and z̄ go to the unit circle) This gives
us a way to describe interactions using the unit disk.

•r =∞

r = 0

The state-operator correspondence specifies the outcome of a string interaction by examin-
ing an operator near the center of the disk. We have

αµ
−m =

√
2

α′

∫
z−m∂zX

m dz

2π

∼ (∂mz X
µ)(0).

(14.7)

This is a vertex operator. In practice we rarely work with string diagrams, we usually have
vertex operators acting on some [Riemann] sphere. We see that

| 0, k⟩ = :eikx: | 0, 0⟩. (14.8)

Then we have a “Vertex Operator”,

V = (const.)

∫ [
(γabSµν + iεabaµν)∂aX

µ∂bX
ν + α′ϕ (2)Reikx

]√
−γ d2σ (14.9)
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where Sµν is symmetric, aµν is antisymmetric which corresponds to the graviton and axion
vertex operators (respectively). The last term corresponds to the dilaton. We can work
backwords starting from

Gµν = ηµν + Sµν , (14.10)

then the action

I =

∫
γab∂aX

µ∂bX
νGµν

√
−γ d2σ (14.11)

has its path-integral’s integrand expands in powers of Sµν like

eiI = eiI(G=η)

(
1 +

∫
γab∂aX

µ∂bX
νSµν

√
−γ d2σ + . . .

)
. (14.12)

Lecture 15.

Remember, if we look at the massless states for open and closed strings we get Gµν ,
Bµν , Φ, and Aµ.

We can also add fermions in two ways. We can look at spacetime fermions (described
not just by x but also by fermionic coordinates). We end up with the Green–Schwartz
model.

The other way is to add world sheet fermions. We have Xµ(σ, τ) be our coordinates,
ψµ(σ, τ) be our fermion. To do this, it’s easier to use 2-spinors:

ψµ =

(
ψµ

ψ̃µ

)
(15.1)

There is a nice supersymmetry of the form

δXµ ∼ ηψµ − η∗ψ̃µ (15.2a)

δψµ ∼ η∂zXµ (15.2b)

δψ̃µ ∼ η∗∂z̄Xµ, (15.2c)

where z = τ + iσ. The Lagrangian looks like

L ∼ ∂zXµ∂z̄Xµ + ψµ∂z̄ψµ + ψ̃µ∂zψ̃µ. (15.3)

For a closed string, we can have boundary conditions ψ(σ + ℓ) = ψ(σ) or ψ(σ + ℓ) =
−ψ(σ). We can make either choice consistently, the former is known as Ramond boundary
conditions, the latter is Neveu–Schwartz boundary condition. We can consider a mode
expansion

R : ψµ =
∑
m∈Z

dµmei2πmσ/ℓ

NS : ψµ =
∑

m∈Z+ 1
2

bµmei2πmσ/ℓ
(15.4)

We can look at the coefficients as creation/annihilation operators Vacuum states

R : dµr | 0⟩ = 0 for r ≥ 1

NS : bµr | 0⟩ = 0 for r ≥ 1

2

(15.5)

We can work out the commutators and anticommutators

{dµ0 , dν0} = ηµν , (15.6)

so the d0 are Γ matrices. The Ramond boundary conditions yields spacetime spinors.
We can now ask what are the consistency conditions. There are five types:
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type fields strings allowed boundary conditions imposed

IIA ψ+, ψ̃− closed ψ has Ramond, ψ̃ has NS

IIB ψ+, ψ̃+ closed both have Ramond

I SO(32) open and closed

heterotic SO(32) half closed, half open and closed

heterotic E8 half closed, half open and closed

T-dualityA few more string theory miracles. Suppose X9 ∼ X9+2πR (so we have a cylinder). There
are two implications:
(1) The momentum is quantized p9 = n/R,
(2) If we fix time, X9(σ+ ℓ) = X9(σ)+2πRω where ω ∈ Z (and it is, in fact, the winding

number).
We Fourier expand it,

X9 =
2πRω

ℓ
σ +

n

R
τ + (oscillators). (15.7)

We can work out the mass spectrum

m2 =
n2

R2
+
ω2R2

(α′)2
+ (oscillator contributions). (15.8)

Observe as R → α′/R and n ↔ ω, we end up with exactly the same mass. The winding
modes and momentum modes get switched.

This switching of n and ω is equivalent to switching τ and σ. The left moving momentum
pL → pL but the right moving momentum pR → −pR. The fermions also change sign
ψ̃ → −ψ̃. This means IIA↔ IIB. This is the gist of T-duality.

For open strings, R → 0 corresponds to the center-of-mass motion as m → ∞. If we
consider σ ↔ τ , then Neumann boundary conditions ∂σX

9 = 0 become Dirichlet boundary
conditions ∂τX

9 = 0. The endpoints of the string sees D − 1 dimensions, the rest of the
string sees all D dimensions.

Lecture 16. AdS/CFT Correspondence, Causal Dynamical Triangula-
tions.

The AdS/CFT [anti de Sitter Space, Conformal Field Theory] correspondence is a really
interesting, nonperturbative string theory requiring a negative cosmological constant. Al-
though unphysical, it could contain interesting analogies for our purposes. Recall Anti-De
Sitter space is a flat solution to the Einstein field equations with a negative cosmological
constant. We usually write the cosmological constant as

Λ =
−1
ℓ2

(16.1)

where ℓ is the radius of the universe. The metric is

ds2 =
dr2

1 + (r/ℓ)2
+ r2 dΩ2 −

(
1 +

r2

ℓ2

)
dt2. (16.2)

There is another set of coordinates r = ℓ sinh(ρ), so

ds2 = ℓ2
(
dρ2 + sinh2(ρ) dΩ2 − cosh2(ρ) dt2

)
. (16.3)

Observe that ρ is just the proper distance. If we look at the limit as ρ→∞, the asymptotic
limit, we have

ds2 ∼ ℓ2 dρ2 + ℓ2

4
e2ρ(dΩ2 − dt2). (16.4)
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Near infinity, AdS space looks like a flat cylinder with a radial coordinate added. If we look
at geodesics, we can doodle timelike geodesics [solid line] and lightlike geodesics [dashed
line] in the Penrose diagram:

Timelike geodesics which start at the center of the cylinder will try to “move out”, but the
cosmological constant then acts like an attractive potential. For lightlike geodesics, such
geodesics will reflect off of the boundary. In theory, an observer could receive back a pulse of
light they sent provided they live long enough. The isometry group for AdS is SO(d− 1, 2).

If we have a pair of D-branes, we can have the endpoints of a string be both on one
D-brane, or one endpoint on each D-brane; something like sketched below:

•

•

•

•

• •

On 2 D-branes, open string states have 2 indices varying from 1, 2. For N D-branes we have
N indices with values being 1, 2. This may be oriented, not necessarily symmetrized. It
turns out these indices have an SU(N) symmetry. There is an N →∞ limit where we may
take to decouple gravitons, giving us an SU(N) Yang–Mills theory with a supersymmetry.
We can look at the strong coupling limit, we end up with charged black branes.

We can look at things quite simply: these are dual to each other. That is, they each
describe the entire picture at various limits. What we find is the near horizon geometry of
charged black branes is AdS × (compact). If we look at N coincident 3-branes (3 spatial
dimensions + time), this gives AdS5×S5 and its boundary is a four-dimensional flat cylinder.

Maldacena AdS/CFT conjecture: string theory in bulk (AdS5 × S5) ⇐⇒ N = 4
Supersymmetric SU(N) Yang–Mills theory on a flat 4-dimensional cylinder. That is, “in
bulk” means “in spacetime that’s asymptotically AdS5 × S5”.

16.1 Causal Dynamical Triangulations

A lattice approach to quantum gravity. Nonrenormalizability may be a statement about the
perturbative approach, we’re doing the perturbation wrong—there’s nothing wrong with the
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theory. We have the path integral approach, which has of supreme importance the partition
function

Z =

∫
ei(I[g]+

∫
gµνJ

µν) [dg] (16.5)

where Jµν is a fixed source. We approximate this as a sum over finite geometries, so we
havea discrete approach using lattices (e.g., Regge calculus approach). The defecit angle δ,
the Ricci scalar is determined by parallel transport R = δ ·δ(2)(x). For three dimensions, we
work with 3-simplices, so imagine an edge sticking out of the paper at the vertex doodled
below and making each triangle a face on the tetrahedron.

δ

1 2

3
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We find that, in three-dimensions,∫
R
√
|g|d3x =

∑
i

δiℓi. (16.6)

In four-dimensions, we have, ∫
R
√
|g|d4x =

∑
2-d hinges

δiAi. (16.7)

Regge figured this out in 1961.
So we end up with a discretization of the path integral

Z ≈
∑

discrete
geometries

ei(Iregge+Λ
∑

n Vn) (16.8)

There are several approaches to summing over geometries.
Regge advocated fixing ttriangulation, summing over lengths (and angles). The other

approach is dynamical triangulations fix edge-lengths and sum over triangulations. In princi-
ple, either approach approximates smooth surfaces. The dynamical triangulations approach
walks over the space of possible states. There are two phases in the computation
(1) The crumpled phase
(2) The branched polymer phase.

Dynamical triangulations is modified to become Causal Dynamical Triangulations, prohibit-
ing polymer phases. We have a sort of timelike foliation, restricting the sort of triangula-
tions. It’s not entirely clear how to recover the Newtonian limit.

Lecture 17. Black Hole Thermodynamics.

The reference for today’s lecture will be:
x Steven Carlip, “Black Hole Thermodynamics and Statistical Mechanics”. arXiv:0807.4520,

35 pages.
Black holes are not black but thermal objects

kT =
ℏκ
2π

(17.1)
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where κ is the “surface gravity” (which is 1/4GM for Schwarzschild black holes). They also
have entropy

SBH =
Ahorizon

4ℏG
. (17.2)

In a sense, this is part of quantum gravity, since it involves ℏ, G.
Suppose we have a black hole with mass M , there is a “box of gas” with [characteristic]

length L, temperature T , and mass m. We see that the change in entropy is

∆S =
∆E

T
= −m

T
. (17.3)

We better have a corresponding change in entropy for the black hole, or else a black hole
could be used for a perpetual motion machine. Suppose the black hole is Schwarzschild, so
its metric is

ds2 =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2 dΩ2. (17.4)

The proper distance ρ in the Schwarzschild metric for the box to be on the surface of the
black hole is

ρ =

∫ 2GM+δr

2GM

dr√
1− 2GM/r

∼
√
GM δr (17.5)

We have ρ = L when δr ∼ L2/GM . The mass m is redshifted when w eare far from the
black hole, so the change of mass for the black hole would be,

∆M ∼ m
√
1− 2GM

2GM + δr
∼ mL

GM
. (17.6)

To maximize the loss of entropy, we need L ∼ ℏ/T . We find then

∆S ∼ GM∆M

ℏ
∼ ∆A

ℏG
. (17.7)

One of the laws of Black Hole Thermodynamics is ∆M = κ
8πG∆A.

By the uncertainty principle, a virtual pair with energy E can exist for time ∼ ℏ/E.
Fort a virtual pair, with the negative energy particle entering the black hole, locally it’s as
though the black hole swallowed a particle of positive energy. Far away, it looks as though
it emitted a particle of energy E.

ρ

E −E

•

The proper time for the particle to fall into the black hole would be

τ ∼
√
GM δr ∼ ℏ

E
(17.8)

hence

E ∼ ℏ√
GM δr

. (17.9)

So to an observer far away, the energy is redshifted, so as seen from infinity,

E∞ ∼
ℏ√

GM δr

√
1− 2GM

2GM + δr
∼ ℏ
GM

. (17.10)
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This is precisely the energy corresponding to the black hole temperature. (Usually temper-
ature is derived first, then standard thermodynamics is used to derive entropy.)

Review: QFT in curved
spacetime

Let us briefly review quantum field theory, using discrete momentum. Let

uk = exp(ik · x− iωkt), (17.11)

where ωk = +
√
|k|2 +m2. The Fourier decomposition of the free field,

φ =
∑
k

(akuk + a†ku
∗
k), (17.12)

we observe the commutation relations are such that

[a†k, ak′ ] = δk,k′ , (17.13a)

ak | 0⟩ = 0. (17.13b)

We generalize to curved spacetime,

(□+m2)uk = 0 (17.14)

where □ = ∇µ∇µ uses covariant derivatives. There’s an infinite number of orthogonal
solutions (this happens in flat spacetimes, too, e.g., Bessel functions, Fourier decomposition,
etc. etc. etc.). We can choose two different modes

φ =
∑
k

(akuk + a†ku
∗
k) =

∑
k

(ākūk + ā†kū
∗
k) (17.15a)

where
ūk =

∑
( αki︸︷︷︸
Bogoliubov coefficients

ui + βki︸︷︷︸u∗i ) (17.15b)

We have two number operators, Nk and N̄k. Using the orthogonality of mode functions, we
can prove,

⟨0̄ | Nk | 0̄⟩ =
∑
j

|βjk|2, (17.16)

so how do we choose what vacuum to work in? Hawking argued if we’re far away looking at
the black hole region prior to collapse, there is a natural vacuum: the Minkowski vacuum.

There is another derivation from Parikh and Wilczek [10]. It’s a tunneling approach,
where particles tunnel from inside the black hole to the outside. The particle position
doesn’t move outward, the position of the event horizon moves inward. Then apply the
WKB approximation. We have

Γ = e−2ℑ(I/ℏ) (17.17)

where I is the action. Now we just write

I =

∫ rout

rin

pr dr. (17.18)

We use the metric and there is a pole
√
1− 2GM/r.

In ordinary quantum mechanics, time translation operator is ⟨out | exp(itH) | in⟩, for
thermodynamics it is Tr(e−βH), if we make time imaginary we get a partition function.

There are at least a dozen different modern ways to derive black hole entropy.
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Appendices
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A Introduction to Quantum Gravity: Homework I11

I. Planck scale

The planck length is ℓPl =
√
ℏG/c3.

(a) Suppose you wish to probe an area of characteristic size R with a relativistic particle
(that is, one for which E ∼ pc). Consider the following two restrictions

– uncertainty relation: ∆x∆p ≳ ℏ
– no black hole formed by problem: G∆E/Rc4 ≲ 1.

Find an estimate of the smallest possible value of R. How would this change if you
allow a nonrelativistic probe (that is, a massive probe with mc2 ≫ pc)?

(b) Consider a piece of matter of energy E that is not already a black hole. Its size must
be greater than its Compton wavelength (quantum mechanics) and also large enough
that it is not a black hole (general relativity). Approximately what is its minimum
size?

(c) Recall that for any two quantum mechanical observables Â and B̂ an uncertainty
principle holds

∆Â∆B̂ ≥ 1

2
|⟨[Â, B̂]⟩|

For a free particle (in the Heisenberg picture) with position operator x̂(t) and mo-
mentum operator p̂,

x̂(t) = x̂(0) +
t

m
p̂

and [x̂(0), p̂] = iℏ. Assuming that ∆x(t) is of the same order as ∆x(0), find its
minimum value as a function of t and m. (This is closely related to what is known as
the “standard quantum limit”.)

Now consider measuring a distance L between two points by sending a particle
from one to the other and timing its motion. By relativity, we must have L ≤ ct. If
the particle is too massive, the two points we are measuring will be inside a black hole;
to avoid this we need Gm/Lc2 ≲ 1. Find the resulting limit on ∆x on the accuracy
to which we can measure L.

(d) Find loopholes in these arguments.

II. Van Hove’s theorem

In the Hamiltonian formalism, a classical dynamical system typically has a phase space
that is (at least locally) parametrized by (generalized) positions q and momenta p. The
basic rule in quantization is that “Poisson brackets become commutators.” One way to
express this is by a quantization map Q from functions of the phase space (f(q,p), g(q,p),
etc.) to operators on a Hilbert space. Since we’re physicists, we’ll denote the action of Q

by adding a “hat”: Q(f) = f̂ . An obvious set of conditions for Q is:

(1) Q(af + bg) = aQ(f) + bQ(g) (linearity)
(2) Q(1) = 1
(3) Q(x) and Q(p) are represented irreducibly
(4) [Q(f), Q(g)] = iℏQ({f, g}) (where {f, g} is the Poisson bracket)

Van Hove’s theorem say that this is not possible for a particle moving in one dimension.
Prove this.

Hint: In the phase space, one has hat p2q2 = − 1
9{p

3, q3} and p2q2 = − 1
3{p

2q, q2p}.
Show that these give different values for Q(p2q2). (To do this mathematically rigorously,

you will have to use the irreducibility condition (3), which implies that if [q̂, Ô] = 0 and

11This was handed out April 2, 2009.
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[p̂, Ô] = 0 for some operator Ô, then Ô is proportional to the identity, that is, Ô is a number.
Most “physicists’ proofs” don’t pay too much attention to this.)

Note: “deformation quantization” replaces condition 4 by

(4′) [Q(f), Q(g)] = iℏQ({f, g}) + (terms of order ℏ2)

III. Affine commutators

(a) Show that if [q̂, p̂] = iℏ, then q̂ generates translations in p̂, that is,

e−iaq̂/ℏp̂eiaq̂/ℏ = p̂+ a.

(b) Suppose that [q̂, p̂] = iℏ. Show that if there is any state that is an eigenfunction (or a
generalized eigenfunction—that is, the state need not be normalizable) of p̂, then all
real numbers appear as eigenvalues of p̂.

(c) Suppose the fundamental operators are instead q̂ and D̂ = q̂p with [q̂, D̂] = iℏq̂. Show
that D̂ generates dilatations, that is,

e−iaD̂/ℏp̂eiaD̂/ℏ = eap̂.

(d) With affine commutators, show that if there is any state that is an eigenfunction of p̂
with positive eigenvalue, then all positive real numbers appear as an eigenvalue of p̂.
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B Introduction to Quantum Gravity: Homework II12

I. Electrodynamics as a constrained system.

Classical electrodynamics is described by a four-vector potential Aµ and an antisym-
metric field strength tensor Fµν = ∂µAν − ∂νAµ. The Lagrangian is

L =
1

4
FµνF

µν +AµJ µ

where J µ is the current four-vector, and the ordinary electric and magnetic fields are

Ei = F 0i, Bi =
1

2
ϵijkF

jk

where i, j, k, . . . run from 1 to 3 and µ, ν, . . . run from 0 to 3.

The tensor Fµν is invariant under gauge transformations

Aµ → Aµ + ∂µΛ

This suggests the system has constraints (to generate the gauge transformations).

(a) If you are not familiar with this formalism, convince yourself that it really does give
you Maxwell’s equations.

(b) Show the canonical variables (“generalized positions and momenta”) are Ai and E
j ,

with Poisson brackets {Ai(x), E
j(y)} = δji δ

3(x− y).
(c) Show that A0 is a Lagrange multiplier, and the corresponding constraint is the Gauss

law C = ∇ ·E = 0.
(d) Show the constraint generates the gauge transformations ofAi, that is, {

∫
Λ(x)C(x) d3x,Ai(x

′)} ∼
(Ai + ∂iΛ)(x

′).
(e) Correct any mistakes in algebra I have made.

II. Extrinsic Curvature: Symmetry

Let na be the unit normal to a t = const. hypersurface. (Note this implies na = f∇at
for some function f . Why?) Recall the extrinsic curvature tensor is

Kab = qa
c∇cnb (B.1)

where gab = qab + nanb.

(a) Show Kab = Kba.
(Hint: use the fact na = f∇at and find nc∇cn

b in terms of f . The vector ab =
nc∇cn

b is sometimes called the “acceleration”.)
(b) Show K = ∇an

a (where K = Ka
a).

III. Gauss–Codazzi

A “spatial” tensor T ab...
cd... is one with no normal components, i.e.,

naT
ab...

cd... = nbT
ab...

cd... = ncT ab...
cd... = · · · = 0

qab is a projection operator, that is, it projects any index into a “purely spatial” one.
(Why?)

The three-dimensional (“spatial”) covariant derivative Da of a spatial tensor can be
defined as

DeT
ab...

cd... = qagq
b
h . . . qc

iqd
j . . . qe

f∇fT
gh...

ij...

12This was handed out April 10, 2009.
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(that is, we take the ordinary four-dimensional covariant derivative and then project all
indices onto the t = const. slice). The spatial curvature is defined by the condition

[Da, Db]vc =
(3)Rabc

dvd

for any spatial vector vd. Using these facts, show that

(a) (3)Rabcd = qa
eqb

fqc
gqd

hRefgh +KacKbd −KadKbc

(b) Rabcdn
d = ∇aKbc −∇bKac − na(∇bac − abac) + nb(∇aac − aaac)

(c) R = (3)R−KabK
ab +K2 + 2∇a(n

b∇bn
a − na∇bn

b)

Note that sign conventions differ reference to reference.

IV. ADM metric and extrinsic curvature

Suppose we decompose the metric in ADM form as

ds2 = N2 dt2 − qij(dxi +N i dt)(dxj +N j dt)

(a) Confirm that the inverse metric is

gab =

(
1

N2 −Ni

N2

−Nj

N2 −qij + NiNj

N2

)

where qij is the inverse of qij and I raise and lower indices with the spatial metric
tensor qij .

(b) Show that the extrinsic curvature tensor is

Kij =
1

2N
(∂tqij −DiNj −DjNi)

Note that sign conventions differ from reference to reference.
(Hint: as noted in problem II, the unit normal is na = f∇at. What is this in these

coordinates? What is f?)
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C Introduction to Quantum Gravity: Homework III13

I. Lie Derivative of the Metric.

The Lie derivative of a metric along a vector ξa is

Lξgab = gac∂bξ
c + gbc∂aξ

c + ξc∂cgab

Show this may be rewritten as

Lξgab = ∇aξb +∇bξa

where ∇ is the standard covariant derivative.

II. Constraints generate diffeomorphism

Recall that the Hamiltonian and momentum constraints are

H =
16πG
√
q

(
πijπ

ij − 1

2
π2

)
, Hi = −2Djπ

ij

and πij = 1
16πG

√
q(Kij − qijq) with Kij =

1
2N (∂tqij −DiNj −DjNi). Let

H[ξ̂] =

∫ [
ξ̂⊥H+ ξ̂iHi

]
d3x.

Show that H[ξ̂] generates (spacetime) diffeomorphisms of qij , that is,{
H[ξ̂], qij

}
= (Lξq)ij

where Lξ is the full spacetime Lie derivative and the spacetime vector field ξµ is given by
the full spacetime Lie derivative and the spacetime vector field ξµ is given by

ξ̂⊥ = Nξ0, ξ̂i = ξi +N iξ0

The parameters (ξ̂⊥, ξ̂i) are known as “surface deformation” parameters.

(Hint: use problem 1 and express the Lie derivative of the spacetime metric in terms of
the ADM decomposition.)

III. Surface deformation algebra

Show that {
H[ξ̂], H[η̂]

}
= H[{ξ̂, η̂}SD]

where the “surface deformation bracket” {−,−}SD is

{ξ̂, η̂}⊥SD = ξ̂i∂iη̂
⊥ − η̂i∂iξ̂⊥

{ξ̂, η̂}iSD = η̂j∂j ξ̂
iξ̂j∂j η̂

i + qij
(
ξ̂⊥∂j η̂

⊥ − η̂⊥∂j ξ̂⊥
)

Show that for purely spatial deformations (ξ0 = η0 = 0), the surface deformation bracket
is equal to the ordinary commutator.

(The surface deformation bracket is a “canonical” bracket, defined at one moment of
time. For deformations with ξ0 or η0 nonzero, the commutator involves time derivatives;
it can be shown that the time derivatives of ξµ and ηµ can be chosen so that the surface
deformation brackt is again equal to the commutator.)

13I do not recall when this was handed out. This was never posted to the course website, unlike the other
homework assignments.
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D Final Exam14

The final exam for “Quantum Gravity” will take place on Tuesday, June 9, from 8–10 am
in Roessler 158. The format of the exam will be as follows:

I have listed below twelve topics that have been central themes of the course. On the
exam, I will list six of these. You will choose four of the six, and write a short (3–4
paragraph) essay describing each of the four you have chosen.

Your essays do not have to be heavily mathematical, but some mathematics—equations
and simple derivations—are appropriate for most of these topics. The goal of the essays is
to demonstrate the basic concepts, well enough to (for example) explain the fundamental
ideas to another student or read and roughly follow a paper in which they are used. I have
included a sample essay on the opposite side of this paper.

Topics:

(1) Ambiguities in quantizing a classical system
(2) Quantization of constrained systems: Dirac and reduced phase space methods
(3) Observables and the “problem of time” in quantum gravity
(4) The ADM form of the metric
(5) The diffeomorphism and Hamiltonian constraints in general relativity
(6) The Wheeler–DeWitt equation
(7) The parallel transport matrix, holonomies, and gauge-invariant observables
(8) Spin networks
(9) The area operator in loop quantum gravity
(10) The Nambu–Goto and Polyakov actions in string theory
(11) How string theory contains gravity
(12) Regge calculus and dynamical triangulations

14This was a handout given a few weeks before the final exam. It is transcribed verbatim.
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Sample essay on the theme “constraints and symmetries”

(Note that this example is more heavily mathematical than would be appropriate for
some of the other topics. Include derivations like this when you can make them simple
enough; otherwise, describe them and give a few steps. Of course, this sample is also a bit
more polished than I would expect on the exam.)

A constraint is an equation of motion that involves only first time derivatives (in the
Lagrangian formalism) or no time derivatives (in the Hamiltonian formalism). It therefore
does not describe time evolution, but rather restricts (“constrains”) the initial data. In the
action, a constraint is most easily described with a Lagrange multiplier. In the Hamiltonian
form, for instance,

I =

∫
(pq̇ −H − λC) dt (1)

where the Lagrange multiplier λ enforces the constraint C(p, q) = 0. In order to be preserved
under time evolution, the constraint must effectively have a vanishing Poisson bracket with
the Hamiltonian:

{C,H} = V C =⇒ dC

dt
= 0 when C = 0. (2)

With some technical exceptions, a constraint generates a symmetry of the classical
action. That is, under the transformation

δq = ϵ{C, q} = −ϵdC
dp

, δp = ϵ{C, p} = ϵ
dC

dq
(3)

the action remains invariant. To see this, note that

δI =

∫ [
δq

(
dp

dt
− dH

dq

)
+ δp

(
−dq

dt
− dH

dp

)
− δλ C

]
dt

=

∫ [
−ϵdC

dp

(
dp

dt
− dH

dq

)
+ ϵ

dC

dq

(
−dq

dt
− dH

dp

)
− δλ C

]
dt

=

∫ [
−ϵdC

dt
− ϵ{C,H}+ δλ C

]
dt =

∫ (
dϵ

dt
− ϵV − δλ

)
C dt

which is zero if we choose δλ = (dϵ/dt)− ϵV .

An example of a constrained system is electromagnetism. For an electromagnetic system,
the vector potential A and the electric field E are canonically conjugate, and the Gauss law
G = ∇·E−ρ = 0 is a constraint. It is easy to check that G generates gauge transformations
of A. General relativity is also a constrained system, in which the constraints generate
diffeomorphisms of space and “surface deformations” that are equialent to diffeomorphisms
involving time when the equations of motion are satisfied.
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