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Lecture 1

Lie algebras and Lie groups, and their representations, will be the subject of the quarter.
We will start with an outline for the course.

First of all, an explanation of what is a Lie group. Well, group theory is simply a theory
of symmetry. We’ve studied mostly finite and discrete symmetries, but in the real world
symmetries are continuous. For example in 4-dimensional space, everything is invariant to
translations labeled by elements of R3 (this is a continuous symmetry). Everything is also
invariant under rotations (symmetry denoted by SO(3)). So really the study of symmetries
should be the study of continuous groups. First of all, group of symmetries should be a
topological group. (It is a group object in the category of topological spaces.) We have a
notion of continuity therefore.

Definition 1.1. A “Topological Group” consists of a topological space M equipped with

1. a continuous mapping µ : M ×M →M called the “Law of composition”;

2. a continuous mapping e : 1→M called the “Identity Element”;

3. a continuous mapping ξ : M →M called the “Inversion Operation”.

We can further demand that M is a manifold. So if we have a group G, t hen we
can take a neighborhood of the unit element e ∈ U ⊆ G where U ∼ Rn is “topologically
equivalent” (i.e. we can introduce a “good” coordinate system in U denoted by x1, ..., xn

which are continuous and have continuous inverses).
A manifold is a topological space where every point x ∈M has a neighborhood Ux ⊆M

which is equivalent to Rn. We have a preferred point, namely the unit point (identity element
of the group), since we have shifts

Tg(x) = g · x. (1.1)

These shifts are continuous topological transformations with continuous inverses, a continuous
identity, etc. We have

Tg(e) = g · e = g ∀g ∈ G. (1.2)

We have coordinates in the neighborhood of any point. A Lie group is a topological group
with a coordinizable neighborhood at every point.

Note that this is not a good definition. The coordinates of x · y are coordinates of
these two factors f j(x1, . . . , xn, y1, . . . , yn) continuous, but that’s not enough. We would
like these functions to be differentiable (moreover smooth, i.e. C∞). This is not included
in the definition of a Lie group. First could we correct our coordinates to be differentiable
(there is a theorem which says we can). Second, we’d like to incorporate smoothness into
the definition of a Lie group. A Lie group is then a topological group with a neighborhood
at each point with coordinates permitting some smooth structure.

Now what of Lie algebras. If the Lie group is connected, if we know the group in the
neighborhood of e (the identity element), then we know it everywhere. The main thing is
we can take infinitesimally small neighborhoods1 of e which is how we get a Lie algebra.

Take the group GL(n). It is easy to see it is a Lie group. If we take any closed subgroup
G ⊆ GL(n), then we will get a Lie group. It is a kind of submanifold of GL(n). We can
consider the tangent space of e in this submanifold, and it turns out it is a Lie algebra. So it
is a vector space closed under a commutator operation. This is the Lie algebra of the group
G, denoted Lie(G).

Definition 1.2. A “Lie Algebra” consists of a vector space V equipped with a commutator

[·, ·] : V × V → V (1.3)

such that, for all a, b, c ∈ V , we have

1Do not worry about what this rigorously means, we will use the tools of differential geometry to make
such a notion explicit and rigorous.
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1. distributivity [a, b+ c] = [a, b] + [a, c];

2. anticommutativity [a, b] = −[b, a];

3. Jacobi identity [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Proposition 1.3. For every Lie group we can construct a corresponding Lie algebra.
Moreover, if Φ: G → G′ is a Lie group morphism, then we can construct a Lie algebra
morphism φ : Lie(G)→ Lie(G′).

Question. If we have a Lie algebra, does it come from a Lie group? Does it only come
from only one Lie group?

The answer is that a finite dimensional Lie algebra gives rise to a simply connected Lie
group corresponding to the Lie algebra. Omitting the criteria of finite dimensionality, we
don’t have an answer — no notion of infinite dimensional Lie groups currently exist!

We have, lastly, a notion of representation. It is very simple, namely a group homomor-
phism

ρ : G→ GL(n). (1.4)

By proposition 1.3 this has a corresponding morphism of Lie algebras Lie(G)→ Lie(GL(n))
which is the representation of Lie algebras. How to restore, how to classify the representations
of Lie algebras? It is very easy, contrasted to asking the same question for Lie groups.

We will mostly work with compact Lie groups, classical Lie groups, and their representa-
tions. We will also consider infinite dimensional Lie algebras. We will consider applications
to physics.

A Kac–Moody algebra is in general infinite dimensional, given by some commutation
relations. Every classical Lie Algebra may be considered as a Kac–Moody algebra. Every
Lie algebra of a compact Lie group is a Kac–Moody algebra, to be more precise.

Semisimple and reductive Lie algebras are very closely related to the theory of compact
Lie algebras of compact Lie groups. This is Hermann Weyl’s so-called unitary trick. By
default we will consider Lie algebras over R, i.e. consider the underlying vector space to be
over R. We can consider over any field (viz. over C). At some moment we may switch to
work over C, as we are interested in complex representations.

Lecture 2

The main thing of interest is Lie groups, but Lie algebras are a useful tool to study Lie
groups. We will start with Lie algebras. First what is an algebra. Well, more or less, it’s
obtained from the formula

Vector Space + Ring = Algebra, (2.1)

with some compatibility conditions. When we speak of vector spaces, we need a field F;
a ring has 2 operations: multiplication and addition. (A ring is an Abelian group under
addition, and a magma under multiplication.) The only only relation between addition and
multiplication is distributivity:

a(b+ c) = ab+ ac (2.2a)

(b+ c)a = ba+ ca. (2.2b)

In general, a ring doesn’t have a multiplicative identity, nor is multiplication an Abelian
operation.

The compatibility condition for an algebra is thus

λ(ab) = (λa) · b (2.3a)

= a · (λb) (2.3b)

where λ ∈ F. This is associativity.
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Example 2.1. We have Matn(F) — the collection of all n× n matrices over a field F — be
a noncommutative, associative algebra.

Example 2.2. If we have some set M , the set of functions on M (denoted by C(M)) is
an algebra with respect to point-wise addition, multiplication, and F-scalar multiplication.
Note that if F is a field, the algebra is associative. Now C(M) has a lot of subalgebras if M
has some additional structure. If M is a topological space, we have the set C0(M) ⊆ C(M)
of continuous functions be a subalgebra. If M = Rn we may consider C∞(M) ⊆ C(M) the
subalgebra of smooth functions.

Example 2.3. We can consider C∞(Sn) where Sn is the n-sphere. We do this by introducing
local coordinates, and define the notion of smoothness in Sn by demanding tit be smooth
in every coordinate system on Sn. But it is possible for a function to be smooth in one
coordinate system but not another, so we need to use the notion of a transition function.

A smooth manfiold M is covered by smooth local coordinate systems, and the transition
function between coordinate systems is smooth. So C∞(M), for some smooth manifold M ,
is a unital, commutative, associative algebra. Unital=has unit element for

multiplicationWe will introduce a construction of an algebra for a group, called the group algebra.
We consider all formal linear combinations of group elements with coefficients from a ring:

Group→ Algebra

G→ F[G] (2.4)

which has an element resemble
∑n
i aigi where gi ∈ G and ai ∈ F for all i. We have addition

be component-wise, and multiplication also be component-wise. So for example

(g1 + g2) + (g2 + 3g3) = g1 + 2g2 + 3g3 (2.5a)

(g1 + g2)(g2 + 3g3) = g1g2 + 3g1g3 + g2
2 + 3g2g3. (2.5b)

More generally

(
∑
i

aigi)(
∑
j

bjgj) =
∑
i,j

aibj · (gigj). (2.6)

In the language of category theory, this is a functor Grp→ Alg.
Recall a representation of a group G → GL(V ) are homomorphisms from G to

automorphisms on V . We have very simply for a rep G → GL(n) a representation
F[G] → L(V, V ) = Matn of the algebras. For every g ∈ G we have its representation
ϕ(g), so this induces a representation∑

aigi 7→
∑

aiϕ(gi), (2.7)

where products go to products and sums go to sums. The opposite direction, a representation
of F[G] induces a representation of G, is also true (by the duality principle). Moral:
representations of groups induce representations of associative algebras (a representation of
associative algebras in general is referred to as “Modules”).

Consider A an associative algebra. We will define a new operation on A , namely the
bracket as a commutator

[a, b] = ab− ba (2.8)

for all a, b ∈ A . So with respect to the bracket, A is an algebra (distributivity remains, but
associativity is broken). But observe

1. [a, b] = −[b, a] i.e. we have antisymmetry of the bracket;

2. the Jacobi identity holds.
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This newly constructed algebra is in fact a Lie algebra! So for every associative algebra A ,
we may construct a Lie algebra on A ; this is described by a natural functor, so algebra
morphisms are mapping to Lie algebra morphisms.

Remark 2.4. There are other ways to construct Lie algebras.
N.B.: subalgebras of Lie algebras are again Lie algebras.

Example 2.5. The Lie Algebra Matn(F) = gln(F) the Lie algebra for GL(n,F).

Example 2.6. Consider sln(F) = {A ∈ gln(F) | Tr(A) = 0}. This is a Lie subalgebra of
gln(F), since Tr(AB) = Tr(BA) so Tr([A,B]) = 0 for all A,B ∈ gln(F).

We can introduce the notion of an “Ideal” in an algebra, especially a Lie algebra! If
I ⊆ R where R is a ring, then IR = I is a left ideal, and RI = I is a right ideal. This notion
may be generalized to algebras (especially Lie algebras!). Fir Lie algebras, every ideal is a
two-sided ideal.

Proposition 2.7. sln(F) is an ideal in gln(F).

If we have a ring morphism ϕ : R → R′, its kernel is a two-sided ideal. Moreover we
may factorize

Im(ϕ) ∼= R/Ker(ϕ). (2.9)

This construction generalizes to algebras.

2.1 Exercises

xEXERCISE 1

Check that the vector space R3 is a Lie algebra with respect to cross-product of vectors. Check

that this Lie algebra is simple (does not have any non-trivial ideals). Check that all derivations of

this Lie algebra are inner derivations.

xEXERCISE 2

Check that the Lie algebra of Problem 1 is isomorphic to the Lie algebra so(3) of real antisymmetric

3× 3 matrices and to the Lie algebra su(2) of complex anti-Hermitian traceless 2× 2 matrices.

Lecture 3: Examples of Lie Algebras

Let us consider n-dimensional space Rn, with coordinates (x1, . . . , xn), and we can
consider either functions or polynomials of these coordinates C[x1, . . . , xn] and we will
consider the differential operators on C[x1, ..., xn]. It is an associative algebra, but also a
Lie algebra (when the Lie bracket is the commutator). We can consider Lie subalgebras, e.g.

first order differential operators2Â = Ai∂i. But this is NOT a subalgebra of derivations, the
product ÂB̂ is a second order differential operator; however note that

[Â, B̂](f) = Ai∂i(B
j∂jf)−Bj∂j(Ai∂if) (3.1a)

= Ai(∂iB
j)∂jf +AiBj∂i∂jf −Bj(∂jAi)∂if −AiBj∂i∂jf (3.1b)

= Ai(∂iB
j)∂jf −Bj(∂jAi)∂if (3.1c)

So we write
Ĉ = Ck∂k = Ai(∂iB

j)∂j −Bj(∂jAi)∂i (3.2)

This Ĉ is a derivation on C[x1, ..., xn]. We can write Ck = Aj(∂jB
k) − Bj(∂jAk). The

commutator of first order differential operators is again a first order differential operator.
We would like to express this operator in two different ways. First what are the

coefficients Ai? They are the components of a vector field. So this is really the algebra

2Note that we are using Einstein summation convention; when one index is upstairs and another is
downstairs, we sum over it as a dummy index.
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of vector fields, the commutator of vector fields yield a Lie Algebra. Second, we want to
introduce the notion of derivation of algebra. It is something satisfying the Leibniz rule.
Suppose we have an A -algebra, and a linear map

α : A → A (3.3)

such that
α(ab) = α(a)b+ aα(b). (3.4)

First, these first order differential operators are derivations, and moreover all derivations
are first order differential operators.

This is a bit ambiguous, the algebra considered are left unspecified (smooth functions
or polynomials!). We will prove it for polynomials, but not for smooth functions. If we know
how a derivation behaves on the generators of the polynomial, then we know everything.
Let Â(xi) = Ai(x) where Ai(x) is a polynomial.

Remark 3.1. All this stuff works on smooth manifolds despite never specifying what a
“smooth manifold” is!

Theorem 3.2. Given an algebra A , then we may consider Der(A ) of derivations of A
which form a Lie algebra.

Proof. We should prove it is a vector space, but it is obvious; we should prove the commutator
of derivations α, β ∈ Der(A ) is a derivation [α, β] ∈ Der(A ). We consider

(α ◦ β)(ab) = α(β(ab)) (3.5a)

= α(β(a) · b+ a · β(b)) (3.5b)

= α(β(a) · b) + α(a · β(b)) by linearity (3.5c)

= (α ◦ β)(a) · b+ β(a)α(b) + α(a)β(b) + a · (α ◦ β)(b) (3.5d)

Now we can consider the commutator expression of α with β, which amounts to

[α, β](ab) =

(
(α ◦ β)(a) · b+ β(a)α(b) + α(a)β(b) + a · (α ◦ β)(b)

)
−
(

(β ◦ α)(a) · b+ β(a)α(b) + α(a)β(b) + a · (β ◦ α)(b)

)
(3.6a)

= (α ◦ β)(a)b+ a · (α ◦ β)(b)− (β ◦ α)(a)b− a · (β ◦ α)(b) (3.6b)

= [α, β](a) · b+ a · [α, β](b). (3.6c)

This concludes our proof.

One last example of derivations. Consider an algebra A (either associative or Lie), take
a, x ∈ A where a is fixed. Consider the derivation

αa(x) = [a, x]. (3.7)

For Lie algebras it is absolutely trivial:

αa([x, y]) = [αa(x), y] + [x, αa(y)] (3.8a)

⇐⇒ [a, [x, y]] = [[a, x], y] + [x, [a, y]] (3.8b)

= −[x, [y, a]]− [y, [a, x]] Jacobi Identity! (3.8c)

Remark 3.3. Such derivations are called “Inner Derivations”.
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Lets compute the commutator of two inner derivations, the answer is the

[αa, αb] = α[a,b] (3.9)

the result is an inner derivation. We have a homomorphism, so we have a G -Lie algebra so
we get a map G → Der(G ) which, for all a ∈ G , is mapped to

αa = [a,−]. (3.10)

N.B.: Henceforth and throughout, I will use the term “morphism” and “homomorphism”
interchangeably.

We can consider the morphism G → L(G ) where L(G ) is the linear operators on G . We
have a representation of our Lie algebra G , called the “Adjoint Representation” where
a 7→ αa = [a,−]. We write ada = αa. This is one of the simplest and most important
examples of the representation of Lie algebras.

Consider Ker(ad). Then αa = 0. What does it mean that [a, x] = 0 for all x ∈ G ? This
is precisely the “Center of G ” denoted by Ker(α) = Z.

Theorem 3.4. If a finite dimensional Lie Algebra has no center (or a trivial one), then it
is isomorphic to a matrix Algebra.

Proof. We see that Im(ad) consists of a subalgebra of a Lie algebra of matrices since the Lie
algebra IS a vector space and it is finite dimensional. Thus ad is a matrix algebra.

Lecture 4

We started discussing the adjoint representation last time. Given a Lie algebra G and
a ∈ G , we can construct αa = [a,−], αa : G → G and obeys

α[a,b] = [αa, αb]. (4.1)

The adjoint representation for R3 equipped with the cross-product form Lie(SO(3)) — the
Lie algebra for SO(3). The derivations are defined completely if we know the derivations of

the generators; moreover, for e.g. ı̂, ̂, k̂ we only need to think about ı̂, ̂ since ı̂× ̂ = k̂.

Definition 4.1. The “Structure Constants” for a Lie algebra G (with generators e1, ...,
en which form a basis of the vector space) are specified by [eα, eβ ] = fαβ

γeγ , where fαβ
γ

are the structure constants.

Remark 4.2. If we have a real Lie algebra, the structure constants are real; on the other
hand, for complex Lie algebra, the structure constants are complex.

Definition 4.3. Let G be a real Lie algebra. Its “Complexification” consists of a Lie
algebra denoted by CG constructed by making the structure constants complex.

So complexification is some “mapping”

(Real Lie Algebras)→ (Complex Lie Algebras)

xαeα 7→ zαeα

where zα = xα + iyα ∈ C, xα ∈ R. So we can write CG = G ⊕ iG where we have this direct
sum be the direct sum of vector spaces. This induces a notion of multiplication.

Example 4.4. Consider the Lie algebra so(n) which is a real Lie algebra consisting of
antisymmetric n-by-n matrices:

AT +A = 0, (4.2)

where A ∈ Matn(R). We want to complexify it, which is very easy We consider the same
condition but take matrices with complex entries A ∈ Matn(C) which obey Eq (4.2). So we
write so(n,C) = Cso(n,R).
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Example 4.5. The algebra u(n) of anti-Hermitian matrices A + A† = 0 where A† is the
Hermitian conjugate (i.e. conjugate transpose of A). We have A ∈ Matn(C) but what is its
complexification? Observe

Cu(n) = gl(n,C), (4.3)

why? Well, for X ∈ Matn(C) we have

X =
1

2
(X −X†)

anti-Hermitian

+
1

2
(X +X†)

Hermitian

(4.4)

but observe if A is anti-Hermitian, we have A+A† = 0, then iA is Hermtian since

(iA)† + iA = i(−A† +A) = 0. (4.5)

So G is anti-Hermitian, iG is Hermitian, and CG is everything.

We like to work in C since it is simpler than working in R.

Theorem 4.6. Complex representations of real Lie algebras are in one-to-one correspondence
with the complex representations of its complexification.

A representation maps basis vectors to linear operators, requiring us to solve

[êα, êβ ] = fαβ
γ êγ , (4.6)

where ϕ(eα) = êα. For the complexified Lie algebra, we do precisely the same thing!
We will define matrix groups, then matrix Lie algebras. It will not be a general definition.

Definition 4.7. A “Matrix Group” is a closed subgroup of GL(n,R) or GL(n,C).

Theorem 4.8. The tangent space to the matrix group at the point I = e = 1 the identity is
a Lie algebra called the Lie algebra of the matrix group.

Suppose we have a curve x(t) ∈ Rm or in any topological space. Well, since x is a curve,
it’s a mapping

x : [α, β]→ Rm (4.7)

from an interval of the real line [α, β] to the space, the tangent vector is

dx(t)

dt

∣∣∣∣
t=α

= x′(α). (4.8)

The tangent space at x0 ∈M for a manifold M is the vector space of all tangent vectors at
x0. If the surface is given by

f(x1, . . . , xn) = 0, (4.9)

we promote x 7→ xi(t) to be components of a curve, implying

f(x1(t), . . . , xn(t)) = 0. (4.10)

We thus have by the chain rule

d

dt
f(x1(t), . . . , xn(t))

∣∣∣∣
t=α

=
∂f

∂xi
dxi

dt

∣∣∣∣
t=α

= 0. (4.11)

If we use the implicit function theorem, we can consider Ai vectors such that

Ai
∂f

∂xi

∣∣∣∣
t=α

= 0. (4.12)
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Example 4.9. Consider O(n) = {A | ATA = I} the group of n-by-n orthogonal matrices.
We take A(t) to be a curve in O(n) such that A(0) = I is the identity. So A(t) = I + a(t).
Consider then

(I + a(t))(I + a(t)T ) = I + a(t) + a(t)T +O(t2), (4.13)

then we can deduce the structure of the Lie algebra for “infinitesimal a(t)” to be precisely
the matrices X such that

X +XT = 0. (4.14)

That is, all antisymmetric matrices.

If one has forgotten the implicit function theorem, here it is reproduced:

Implicit Function Theorem. Let f : Rn+m → Rm be a continuously differentiable func-
tion. Fix (x,y) ∈ Rn+m, x ∈ Rn, y ∈ Rm such that f(x,y) = c where c ∈ Rm. If the
matrix

Ji
j =

∂fi(x,y)

∂yj
(4.15)

is invertible, then there exists an open set U containing x, an open set V containing b, and
a unique continuously differentiable function g : U → V such that

{(x, g(x))} = {(x,y)|f(x,y) = c} ∩ (U × V ). (4.16)

Lecture 5: Classical Lie Groups and Algebras

The first example is GL(n,R) and the corresponding Lie algebra gln(R) which consists
of all matrices. It is important to consider gln(R) ⊆ gln(C) the complexification of the
algebra. We will denote gln(C) = Cgln(R) = gln.

Another example SLn(R) the group of n-by-n matrices satisfying the property of having
unit determinant. To compute the Lie algebra, consider elements close to I or more precisely
a curve

A(τ) = I + a(τ). (5.1)

Now we should like to consider the tangent vector by Taylor expanding the curve and using
the coefficient of the first order term as the tangenet vector

A(τ) = I + τX +O(τ2), (5.2)

so we want
det (A(ε)) = det(I + εX) = I + εTr(X) +O(ε2). (5.3)

We see immediately that the condition Tr(X) = 0 is the condition for elements of the Lie
algebra. So we see that

Lie(SL(n,R)) = sln(R) = {X ∈ gln | Tr(X) = 0}. (5.4)

We may consider the complexification

Csln(R) = sln(C) = sln. (5.5)

N.B. sln is an ideal in gln and gln = C⊕ sln is the direct sum of the trivial Lie algebra C
and sln since A = α · I +A′ where A′ ∈ sln so TrA = α · dim.

We also see O(n) = {A ∈ GL(n) | ATA = I}. The Lie algebra is obtained by considering
A = I + εX where ε2 ≈ 0 is an “infinitesimal”3. The Lie algebra is obtained by

ATA = (I + εX)T (I + εX) (5.6a)

3Although this is a mathematically unrigorous notion, we can still use it for computational and heuristic
purposes.
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= I + ε(XT +X) +O(ε2) (5.6b)

= I ⇐⇒ XT +X = 0. (5.6c)

This is the condition for the Lie algebra of O(n) which is denoted

so(n) = {X ∈ gl(n) | X +XT = 0}. (5.7)

We are interested in so(n) = so(n,C) = Cso(n,R). We see the Lie group

SO(n) = O(n) ∩ SL(n) (5.8)

has unit determinants. We can also quickly compute and find that SO(n) is the connected
part of O(n) which contains the identity.

+1

−1

Figure 1: The Two Seperated

Components of O(n).

The group O(n) has elements A ∈ O(n) such that
det(A)2 = 1, so it has two separate components. This
is seen in figure 1. This means that the group O(n) is
disconnected, there is no continuous path connecting e.g.
an element X ∈ O(n) with det(X) = −1 to an element
Y ∈ O(n) with det(Y ) = +1, because the path would
have to go through a point with zero determinant. That
is a singular matrix, which is not contained in the group
GL(n), and that would imply O(n) 6⊆ GL(n) which is a
contradiction.

Remark 5.1. Both SO(n) and O(n) are both compact
groups, i.e. closed and bounded.

Remark 5.2. Note that U(n) and SU(n) = U(n) ∩ SL(n) are also compact. The condition
for U(n) = {A ∈ GL(n,C) | A†A = I}, and the corresponding Lie algebra is u(n). The
condition for it is

(I + εA†)(I + εA) = I + ε(A† +A) +O(ε2) (5.9a)

= I ⇐⇒ A† +A = 0. (5.9b)

So u(n) = {X ∈ gln(C) | A† + A = 0}. We have for su(n) = {A ∈ u(n) | Tr(A) = 0}. We
see that C = gln(C), Csu(n) = sln are the complexifications.

The last classical group we would like to consider preserves some skew-symmetric inner
product. That is to say, 〈x, y〉 = −〈y, x〉 more generally however we will use a Bilinear form
B which is antisymmetric

B(x, y) = −B(y, x). (5.10)

We write
B(x, y) = xTBy (5.11)

if B is an antisymmetric matrix. We want to find matrices A such that B(Ax,Ay) = B(x, y),
i.e.

(Ax)TBAy = x(ATBA)y = xBy (5.12)

or equivalently ATBA = B. N.B. if B = I we recover the orthogonal group. We get a
group Sp(n) = {A ∈ GL(2n) | ATBA = B}. the Lie algebra is of the form

(I + εX)TB(I + εX) = B ⇒ XTB +BX = 0. (5.13)

If B is nondegenerate, then

sp(n) = {X|XTB +BX = 0} (5.14)

is the Lie Algebra for Sp(n). This is a noncompact group. We can get a compact group by
examining the intersection Spn(C) ∩U(n) = Spn, and CLie(Spn) = sp(n) is the original Lie
Algebra.
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Theorem 5.3. All simple Lie algebras that are Lie algebras of compact groups are classical
Lie algebras or one of 5 exceptional Lie algebras.

There is a related notion of semisimple Lie algebra. A semisimple Lie algebra is a direct
sum of noncommutative simple Lie algebras. There is an important class of “Solvable” Lie
algebras.

Remember (e.g. from Lang’s Algebra chapter I §3) that a group G is “Solvable” if we
have a tower of groups

G ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gm = {e} (5.15)

such that for Gn−1 ⊇ Gn we have Gn−1/Gn be Abelian.
The notion of a solvable Lie algebra is the same except we have gn−1 ⊇ gn Notational Warning: we

will use g or G for the Lie
Algebra, interchangeably, and
without warning!

be an ideal.
We also can doodle this cute diagram

Group G B H

Algebra Lie(G)

exp
6

⊇Lie(H)

exp
6

is an ideal

(5.16)

In a sense, these two notions of solvability and semisimplicity are “complementary” —
an arbitrary Lie group has a semisimple part and a reductive part. A compact Lie group
has a semisimple Lie algebra.

5.1 Exercises

xEXERCISE 3
Find Lie algebras of the following matrix groups

1. The group of real upper triangular matrices

2. The group of real upper triangular matrices with diagonal entries equal to 1.

3. The group Tk of real n× n matrices obeying aii = 1, aij = 0 if j − i < k and j = i.

xEXERCISE 4

Check that the groups of Problem 3 and corresponding Lie algebras are solvable.

Lecture 6

Theorem 6.1. Consider a matrix group G ⊆ GL(n). Consider G the tangent space to G
at 1. Then G is a Lie algebra with respect to commutator of elements.

Proof. Consider a curve

x : [0, 1]→ G, x(τ) = 1 + aτ +O(τ2), (6.1)

we obtain the tangent vector

x′(0) = lim
τ→0

x(τ)− x(0)

τ
= a. (6.2)

We are proving this is a vector space and a ring.
Vector Space. If we have two curves

x(τ) = 1 + aτ + · · · , y(τ) = 1 + bτ + · · · , (6.3)

we multiply together to find

x(τ)y(τ) = 1 + (a+ b)τ +O(τ2), (6.4)

and its derivative at 0 is
d

dτ
(x(τ)y(τ))

∣∣∣∣
τ=0

= a+ b. (6.5)



Lecture 6 13

This implies that a+ b ∈ G . We can similarly show

d

dτ
x(λτ)

∣∣∣∣
τ=0

= λa ∈ G (6.6)

for all λ ∈ R. Thus it’s a vector space.
Ring. The commutator [a, b] is obtained by the group commutator. We first let

x(τ) = 1 + aτ + ατ2 + · · · , y(τ) = 1 + bτ + βτ2 + · · · , (6.7)

and for the inverses use primed coefficients

x−1(τ) = 1 + a′τ + α′τ2 + · · · , y−1(τ) = 1 + b′τ + β′τ2 + · · · . (6.8)

Then we plug it into the definition of the group commutator:

x(τ)y(τ)x−1(τ)y−1(τ) = (1 + aτ + · · · )(1 + bτ + · · · )(1 + ατ + · · · )(1 + βτ + · · · ) (6.9)

and we demand that
x(τ)x−1(τ) = 1 (6.10)

produces the conditions that a+ a′ = 0, and aa′+α′+α = 0 from the first and second order
terms respectively. We see similar reasoning for y(τ)y−1(τ) = 1 produces b + b′ = 0 and
bb′ + β′ + β = 0 as conditions on the coefficients. By carrying out multiplication, we find

(1 + aτ + ατ2 + · · · )(1 + bτ + βτ2 + · · · )(1 + a′τ + α′τ2 + · · · )(1 + b′τ + β′τ2 + · · · )
= 1 + (a+ b+ a′ + b′)τ

+ (α+ β + α′ + β′ + ab+ aa′ + ab′ + ba′ + bb′ + a′b′)τ2 + · · · (6.11)

The first order term vanishes identically. The second order terms can be factored as

[(α+ α′ + aa′) + (β + β′ + bb′) + ab+ ab′ + ba′ + a′b′]τ2 (6.12)

which can be rewritten as

[ab+ (−a)(−b) + a(−b) + (−a)b]τ2 = [ab− ba]τ2. (6.13)

Thus
x(τ)y(τ)x(τ)−1y(τ)−1 = 1 + [a, b]τ2 +O(τ3). (6.14)

We can introduce a new parameter σ =
√
τ and rewrite our equations to first order in σ

which implies [a, b] ∈ G .

6.1 Derivations as Infinitesimal Automorphisms

We have an algebra A , all automorphisms of A form a group Aut(A ). We may say
that derivations are “tangent vectors” to automorphisms, or in other words are infinitesimal
automorphisms. Consider a continuous family of automorphisms x(τ), then

x(τ)(ab) = x(τ)(a) · x(τ)(b). (6.15)

We take its derivative, if x′(τ) = ατ , then

ατ (ab) = ατ (a)x(τ)(b) + x(τ)(a)ατ (b). (6.16)

We assume x(0) = 1, then
α0(ab) = α0(a)b+ aα0(b), (6.17)

in other words derivations are infinitesimal automorphisms. We can say that derivations
form the tangent space to e ∈ Aut(A ).
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N.B. We cheated! We assumed A was equipped with a topology, so a curve being “contin-
uous” (much less differentiable!) made sense.

Consider a smooth manifold M , consider C∞(M) the algebra of smooth functions on
M . Any change of variables, i.e. smooth map, ϕ : M →M will generate an automorphism.
Diffeomorphisms of M may be considered as automorphisms of C∞(M). Then Diff(M) ⊆
Aut(C∞(M)).

To be completely precise we should write f(ϕ−1(x)). We may say the diffeomorphisms
form an infinite dimensional topological group. If M is compact, there is a natural notion
of topology on Diff(M). If we have a family of diffeomorphisms ϕt(x), differentiation with
respect to t is obvious. Vector fields are derivations of this algebra; that is Der = Lie Aut A
and

Vect(M) ⊆ Lie Diff(M). (6.18)

We are of course a bit sloppy here....we won’t go into details on infinite dimensional groups.
Suppose that G acts on M , its action can be a smooth action. That is we have a

morphism of G→ Diff(M) and at the level of Lie algebras consider Lie(G)→ Vect(M).

Lecture 7

We took a matrix group G and considered the tangent space at e ∈ G, TeG = Lie(G)
and showed it was the Lie algebra for G. If we took a curve x : [0, 1] → G with x(0) = e,
then we took x′(0) ∈ TeG. This tangent space is closed under the commutator, and addition,
so it’s a Lie algebra.

Question. Given a Lie Algebra, could we “restore” all elements of the group?

Yes, lets take x : [0, 1]→ G without the condition x(0) = e. If x(τ0) = e, then

d

dτ
x(τ)

∣∣∣∣
τ=τ0

∈ Lie(G). (7.1)

The value of the parameter is completely irrelevant. What if we take x(τ0) 6= e? Then
nothing dangerous! Because look, we can take another curve

y(τ) = x(τ0)−1x(τ) (7.2)

which is still a curve in the group. Now y(τ0) = e. Therefore we can say that y′(τ0) ∈ Lie(G).
Or by plugging in the definition, we see y′(τ0) = x(τ0)−1x(τ0) ∈ Lie(G). This is due to the
product rule and x(τ0) being a constant. So for any curve in the group x(τ) ∈ G we have
x(τ)−1x′(τ) ∈ Lie(G). Let

ξ(τ) = x(τ)−1x′(τ). (7.3)

So a curve in G will generate a curve in the Lie Algebra of G by means of this simple way.
But now we would like to have a curve in Lie(G) give rise to a curve in G. We know

dx(τ)

dτ
= x(τ)ξ(τ) (7.4)

gives a system of differential equations. To solve it, we need initial conditions. If we take
x(0) = e, then a solution exists.

How to restore the Lie group? Take all the curves in the Lie algebra, then we get all
the curves in the Lie group starting at 1, then...we get the whole matrix group? Not really,
only the “Connected Part”!!! We use the notion of path connected, that any two points
of the group have a continuous path connecting them.

Example 7.1. O(3) is not connected, since det(X) = ±1 for all X ∈ O(3). We cannot
connect two matrices X, Y ∈ O(3) if det(XY ) = −1. But SO(3) is the connected component
of O(3) since det(X) = 1 for all X ∈ SO(3).

Moral: We still have a way to get back the connected part of the group.



Lecture 7 15

We get x(τ)−1x′(τ) = ξ(τ) ∈ Lie(G). We can take very simple curves in this alge-
bra, namely constants! So ξ(τ) are constant matrices. Then we get ξ(τ) = A implies
x(τ)−1x′(τ) = A if and only if

dx(τ)

dτ
= x(τ)A, (7.5)

with x(0) = e. Then x(τ) = exp(Aτ). One way to define exp(Aτ) is as a solution to this
differential equation. The other way is as a series

x(τ) =

∞∑
n=0

1

n!
(Aτ)n (7.6)

Corollary 7.2. If A ∈ Lie(G), then exp(A) ∈ G.

In reality this is almost sufficient. We have the “Exponential Map”

exp: Lie(G)→ G, A 7→ exp(A). (7.7)

It maps a neighborhood of O ∈ Lie(G) onto a neighborhood of 1 ∈ G. Why is this true?
Because look, this is definitely true if the matrix group is a Lie group. Why? Because look,
what we have is a map of the tangent spaces to the manifold. It is obvious this matrix is
nondegenerate. It is really easy to check for classical groups.

If B = exp(A), then A = log(B). So we have

exp: Lie(G)→ G (7.8)

and
log : G→ Lie(G) (7.9)

which exists in the neighborhood of 1. In reality matrix groups are the only thing that are
interesting. However we should also consider other groups. This requires a general definition
of Lie algebras.

Take any Lie group G (so take 1 = e ∈ G, we can introduce a coordinate system in
the neighborhood of 1, (x1, ..., xn), so it is topologically equivalent to the unit ball, and
moreover permits functions to be differentiable). Take the tangent space at the identity T1G
and introduce an operation in such a way that makes it a Lie algebra. We consider curves
in G, x(τ), such that x(0) = 1 and

dx

dτ

∣∣∣∣
τ=0

∈ Lie(G). (7.10)

Although it is coordinate dependent, we know how to change coordinates x → y(x),
yi = yi(x), and

dyi

dτ
=
∂yi

∂xj
dxj

dτ
, (7.11)

so we could define curves in any coordinate system and obtain the curve in any coordinate
system.

We still need to define the Lie Bracket [ξ, η] for ξ, η ∈ T1G. We would like it to be
compatible with the commutator of matrices. So what to do?

We will draw

ξ =
dx

dτ

∣∣∣∣
τ=0

, and η =
dx̃

dτ

∣∣∣∣
τ=0

(7.12)

where x, x̃ are curves in the group. We introduce the commutator

x(
√
τ)x̃(
√
τ)x(
√
τ)−1x̃(

√
τ)−1, (7.13)
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we would like

[ξ, η] =
d

dτ
x(
√
τ)x̃(
√
τ)x(
√
τ)−1x̃(

√
τ)−1

∣∣∣∣
τ=0

. (7.14)

We have already proven when we work with matrix groups, this is the exact same thing as
the commutator for matrices.

This is not quite the end of the story. But from this definition, we can derive a lot
of important stuff. Namely, if G, G′ are two Lie groups and Φ: G → G′ is a Lie group
morphism, then Lie(Φ): Lie(G)→ Lie(G′) is a Lie Algebra morphism.

Proposition 7.3. Lie is a functor.

Note that the Lie group morphism maps Φ(e) = e′, Φ∗(T1G) = T1′G
′ which is then a

Lie algebra morphism.

N.B. If the group is simply connected, Lie algebra morphisms induce Lie group morphisms.

7.1 Exercises

Lie algebra sl(n) (denoted also by the symbol An−1 ) consists of traceless n×n complex
matrices. The symbol Ei,j denotes a matrix with only one non-zero entry that is equal to 1
and located in i-th row and j-th column.

xEXERCISE 5

Check that the matrices Ei,j for i = j and the matrices hi = Ei,i − Ei+1,i+1 form a basis of sl(n).

Find the structure constants in this basis.

xEXERCISE 6

Check that subalgebra h of all diagonal matrices is a maximal commutative subalgebra. Prove that

there exists a basis of sl(n) consisting of eigenvectors for elements of h. (This means that h is a

Cartan subalgebra of sl(n).)

xEXERCISE 7
Check that ei = Ei,i+1 and fi = Ei+1,i form a system of multiplicative generators of sl(n). Prove
relations

[ei, fj ] = δijhi, [hi, hj ] = 0, (7.15a)

[hi, ej ] = aijej , [hi, fj ] = −aijfj , (7.15b)

(ad ei)
−aij+1ej = 0, (ad fi)

−aij+1fj = 0 (7.15c)

for some choice of matrix aij .

We use here the notation ad(x) for the operator transforming y into [x, y].

Lecture 8

8.1 Main Theorems

We have a group G and we can construct the corresponding Lie Algebra Lie(G) con-
structed by examining the tangent space at the identity e = I ∈ G:

Lie(G) = TeG. (8.1)

We discussed obtaining the Lie algebra from the Lie group, and if we have a group morphism

ϕ : G→ G′, (8.2)

we can construct a morphism of the corresponding Lie Algebras

ϕ∗ : Lie(G)→ Lie(G′). (8.3)
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That is to say the following diagram commutes

G - Lie(G)

G′

ϕ

?
- Lie(G′)

ϕ∗

?

(8.4)

we would like to consider going the other way. That is given a Lie algebra G , we would like
to construct a corresponding group, and show that Lie algebra morphisms G → G ′ generate
group morphisms. But the group needs to be simply connected.

Consider SU(2)/Z2 = SO(3). However SU(2) has the same Lie algebra as SO(3); when
we identify the algebra topologically as the sphere, this quotient identifies opposite points as
the same. This doesn’t affect the Lie algebra.

If we drop the condition of being simply connected, a Lie algebra may give rise to
two different Lie groups. Simply connected permits us to continuously deform one path to
another. Every closed curved is contractible iff the space is simply connected.

Theorem 8.1. For each Lie algebra there exists a unique simply connected Lie group.

If g : [0, 1]→ G is a differentiable curve on the group, we may construct a curve

γ(t) = g(t)−1 dg(t)

dt
=

d

dt
log
(
g(t)

)
(8.5)

on the algebra. We have
dg(t)

dt

∣∣∣∣
t

∈ Tg(t)G, (8.6)

which is not necessarily in the Lie algebra TeG. However for some g ∈ G we have g · 1 = g,
so this is a translation which sends 1 7→ g. We have a map

g∗ : TeG→ TgG, (8.7)

and so the right formula would be

γ(t) = (g∗(t))
−1 dg(t)

dt
. (8.8)

But we will abuse notation and write

γ(t) = g(t)−1 dg(t)

dt
. (8.9)

We have a correspondence between curves in the Lie Algebra and curves in the Lie group.
We obtain a system of differential equations

dg(t)

dt
= g(t)γ(t) (8.10)

which has a unique solution for g(0) = e. We use e, 1, I for the
identity interchanging
notation without warning...

•e

g0(t)

g1(t)

•g

Consider a curve g0(t), g1(t) in the group,
where

g0(0) = g1(0) = e, (8.11)

and we have

g0(1) = g1(1) = g. (8.12)
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1 = e

g1(t)g0(t)

g
We assume that G is simply connected and we will deform the
path, thus obtaining a family of paths gτ (t) = g(τ, t) such that
g(0, t) = g0(t) and g(1, t) = g1(t). We can draw a diagram (seen
on the left), we have two variables to consider τ and t, which
to differentiate? Both of them! Consider

ξ(τ, t) = g(τ, t)−1 ∂g(τ, t)

∂t
(8.13)

and

η(τ, t) = g(τ, t)−1 ∂g(τ, t)

∂τ
. (8.14)

So what do we know? Well, the curves in the Lie algebra are

γ0(t) = g0(t)−1 dg0(t)

dt
= ξ(0, t) (8.15)

and

γ(1)(t) = g1(t)−1 dg1(t)

dt
= ξ(1, t). (8.16)

We also know gτ (0) = e = 1, and gτ (1) = g, for every τ . We see then that

η(τ, 0) = η(τ, 1) = 0. (8.17)

We have
∂tg(τ, t) = g(τ, t)ξ(τ, t) (8.18)

and
∂τg(τ, t) = g(τ, t)η(τ, t). (8.19)

We deduce from
∂τ∂tg(τ, t) = ∂t∂τg(τ, t) (8.20)

that
(∂τg)ξ + g∂τξ = (∂tg)η + g(∂tη), (8.21)

and by multiplying on the right by g(τ, t)−1 we have

(g−1∂τg)

=η

ξ + ∂τξ = (g−1∂tg)

=ξ

η + ∂tη =⇒ ∂tη − ∂τξ = ηξ − ξη. (8.22)

We have an equation of r the form

∂η(τ, t)

∂t
− ∂ξ(τ, t)

∂τ
= [ξ(τ, t), η(τ, t)]. (8.23)

Now, what should we do with this? In reality, we’ve done everything already. What is our
goal? We’d like to restore the group knowing the Lie Algebra. We get points in the group
by considering equivalence classes of paths in the Lie Algebra.

8.2 Exercises

8.2.1 Algebra Dn
The Lie algebra Dn consists of 2n× 2n complex matrices L obeying

(FL)T + FL = 0 (8.24)

where, in block form,

F =

[
0 1
1 0

]
. (8.25)

xEXERCISE 8

Check that Dn is isomorphic to the complexification of the Lie algebra of the orthogonal group

O(2n).
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xEXERCISE 9
Check that the matrices

eij :=

[
Eij 0
0 −Eji

]
(8.26)

together with the matrices

fpq :=

[
0 Epq − Eqp
0 0

]
, gpq :=

[
0 0

Epq − Eqp 0

]
(8.27)

form a basis of Dn.

Here i, j = 1, . . . , n, 1 ≤ p < q ≤ n, and Ei,j has only one nonzero entry that is equal to unity

located in the ith row and jth column.

xEXERCISE 10
Check that the subalgebra h of all matrices of the form[

A 0
0 −A

]
(8.28)

(where A is a diagonal matrix) is a maximal commutative subalgebra, and prove that there exists

a basis of Dn consisting of eigenvectors for elements of h acting on Dn by means of adjoint

representation. (This means that h is a Cartan subalgebra of Dn.)

xEXERCISE 11
Check that ei = ei,i+1 for i = 1, ..., n − 1 and en = fn−1,n; fi = ei+1,i for i = 1, ..., n − 1 and
fn = gn−1,n form a system of multiplicative generators of Dn. Prove the relations

[ei, fj ] = δijhi (8.29a)

[hi, hj ] = 0 (8.29b)

[hi, ej ] = aijej (8.29c)

[hi, fj ] = −aijfj (8.29d)

(adei)
1−aij ej = 0 when i 6= j (8.29e)

(adfi)
1−aijfj = 0 when i 6= j (8.29f)

We use here the notation (adx) for the operator transforming y into [x, y].

8.2.2 Algebra Cn
Consider the Lie algebra Cn consisting of 2n× 2n complex matrices obeying

(FL)T + FL = 0 (8.30)

where

F =

[
0 1
−1 0

]
. (8.31)

xEXERCISE 12

Check that Cn is isomorphic to the complexification of the Lie algebra of the compact group

Sp(2n) ∩ U(2n) where Sp(2n) stands for the group of linear transformations of C2n preserving

non-degenerate anti-symmetric bilinear form and U(2n) denotes unitary group.

xEXERCISE 13
Check that the matrices

eij =

[
Eij 0
0 −Eji

]
(8.32a)

fpq =

[
0 Epq + Eqp
0 0

]
(8.32b)

gpq =

[
0 0

Epq + Eqp 0

]
(8.32c)

form a basis of Cn, where i, j = 1, ..., n and 1 ≤ p ≤ q ≤ n.
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xEXERCISE 14
Check that the subalgebra h of all matrices of the form[

A 0
0 −A

]
(8.33)

where A is a diagonal matrix, is a maximal commutative subalgebra. Prove there exists a basis of

Cn consisting of eigenvectors for elements of h acting on Cn by means of adjoint representation.

xEXERCISE 15
Check that ei = ei,i+1 (i = 1, ..., n− 1) and en = fn,n; fi = ei+1,i (i = 1, ..., n− 1) and fn = gn,n
form a system of generators of Cn. Prove

[ei, fj ] = δijhi, (8.34a)

[hi, hj ] = 0 (8.34b)

[hi, ej ] = aijej , (8.34c)

[hi, fj ] = −aijfj , (8.34d)

(adei)
1−aij ej = 0, i 6= j (8.34e)

(adfi)
1−aijfj = 0, i 6= j (8.34f)

8.2.3 Algebra Bn
The algebra Bn consists of (2n+ 1)× (2n+ 1) complex matrices obeying

LTF + FL = 0 (8.35)

where

F =

1 0 0
0 0 In
0 In 0

 (8.36)

In is the n× n identity matrix, and we have written F in block form.

xEXERCISE 16

Show that Bn is isomorphic to the complexified Lie algebra of O(2n+ 1).

xEXERCISE 17
Check that the subalgebra h of all matrices of the form0 0 0

0 A 0
0 0 −A

 (8.37)

(where A is a diagonal matrix) is a maximal Abelian subalgebra, and prove there is a basis of Bn
consisting of eigenvectors for elements of h acting on Bn by the adjoint representation.

xEXERCISE 18
Find a system ei, fj of multiplicative generators of Bn obeying

[ei, fj ] = δijhi (8.38a)

[hi, hj ] = 0 (8.38b)

[hi, ej ] = aijej (8.38c)

[hi, fj ] = −aijfj (8.38d)

(adei)
1−aij ej = 0, i 6= j (8.38e)

(adfi)
1−aijfj = 0, i 6= j (8.38f)

for “some” matrix aij .

xEXERCISE 19

Describe the roots and root vectors of An, Bn, Cn, Dn.
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Lecture 9

Let G be a Lie group, consider Lie(G) its Lie algebra. Then there is a correspondence
between curves in the group and curves in the Lie algebra. So if we have two curves in the
Lie algebra, we have two curves in the Lie group, then for simply connected groups we may
deform two curves g1(t), g2(t) with

g1(0) = g2(0) = g0, and g1(1) = g2(1) = g1 (9.1)

by introducing a family of curves gτ (t) which has a corresponding family of curves in the
Lie algebra. We have

ξ(τ, t) = gτ (t)−1 dgτ (t)

dt
(9.2a)

η(τ, t) = gτ (t)−1 dgτ (t)

dτ
(9.2b)

and we have the relation
∂η

∂t
− ∂ξ

∂t
= [ξ, η] (9.3)

which occurs in the Lie algebra. Observe that

ξ(t, 0) = γ0(t), ξ(t, 1) = γ1(t), η(0, τ) = η(1, τ) = 0. (9.4)

So given these conditions that, for

∂η(τ, t)

∂t
− ∂ξ(τ, t)

∂τ
= [ξ(τ, t), η(τ, t)] (9.5)

with boundary conditions

ξ(t, 0) = γ0(t) and ξ(t, 1) = γ1(t) (9.6a)

η(1, τ) = η(0, τ) = 0 (9.6b)

can we get information induced in the group? We have

ξ(t, τ) = g(t, τ)−1 ∂g(t, τ)

∂t
, (9.7)

where g(0, τ) = 1. We can restore g(t, τ) since there is a unique solution to eq (9.7).
Suppose we have Lie(G)→ Lie(G′) be a Lie algebra morphism; how can we induce a

Lie group morphism? Well, how we do it makes heavy use of this curve voodoo. The basic
correspondence we have is that “points in the group” corresponds to “curves in the Lie
Algebra”, and “multiplication in the group” corresponds to “concatenation of paths in the
Lie algebra.” Group curve concatenation can be performed, for

g1 : [0, b]→ G (9.8)

and
g2 : [b, a]→ G, (9.9)

as

g(t) =

{
g1(t) t ∈ [0, b]

g2(b)−1g2(t) t ∈ [b, a].
(9.10)

If the paths g1(t), g2(t) are not loops, i.e. g1(0) 6= g1(b) and g2(b) 6= g2(a), then

g(t) =

{
g1(t) t ∈ [0, b]

g1(b)g2(b)−1g2(t) t ∈ [b, a].
(9.11)
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We see that g(b) is in the first case equal to g1(b), and in the second case

g(b) = g1(b)g2(b)−1g2(b) = g1(b). (9.12)

Thus the two cases agree on the overlap.
The corresponding curve in the Lie algebra is

γ(t) =


g1(t)−1 dg1(t)

dt
t ∈ [0, b]

(g2(b)−1g2(t))−1

(
g2(b)−1 dg2(t)

dt

)
t ∈ [b, a]

(9.13)

up to a constant (i.e. g1(b)) in the second case. It doesn’t play a significant role, as it is
factored out. We end up with

γ(t) =


g1(t)−1 dg1(t)

dt
t ∈ [0, b]

g2(t)−1 dg2(t)

dt
t ∈ [b, a]

(9.14)

We will consider the construction of Lie groups from Lie algebra next time...
We proved there exists a one-to-one correspondence between simply connected Lie

groups and finite dimensional Lie algebras. If we have a discrete normal subgroup N ⊆ G,
then the Lie algebra of G/N ∼= Lie(G). This is because there is a neighborhood U of 1 ∈ G
such that U ∩N = {1}.

Theorem 9.1. If G is simply connected, and Lie(G) ∼= Lie(G′), then G′ ∼= G/N where N
is a discrete normal subgroup of G.

Example 9.2. R equipped with addition has trivial commutators in Lie algebra, but
Lie
(
U(1)

) ∼= Lie(R) so U(1) ∼= R/Z.

Lecture 10

We will finish the construction of the Lie group from the Lie algebra. There is
an important formula called the “Baker-Campbell-Hausdorff formula.” Recall we
considered a correspondence between a curve in the Lie group and a curve in the Lie algebra.
The question is can we only consider curves exp(tA) one-parameter families of the group;
in the neighborhood of the identity, the correspondence is one-to-one. It would follow that
multiplication in the group

eA · eB = eC(A,B) (10.1)

goes to some operation in the algebra. We have

C(A,B) = log(eA · eB) (10.2)

we know

eA =

∞∑
n=0

An

n!
, (10.3)

but there is no such series for the logarithm. There is some expansion for the logarithm in
some neighborhood. We need to be careful about the order of multiplication, we can express
the series in terms of the commutators

C(A,B) = A+B+
1

2
[A,B]+

1

12
[A, [A,B]]− 1

12
[B, [A,B]]− 1

24
[B, [A, [A,B]]]+ · · · . (10.4)

Really, the most important part of this formula is

C(A,B) = A+B +
1

2
[A,B] + · · · (10.5)
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We expect ab initio that C(A,B) ∈ Lie(G) is in the Lie algebra. This formula permits
us to construct a “local Lie group”, i.e. a group with induced group operation in the
neighborhood of the unit element.

There is a special situation with this being global. Consider a nilpotent Lie algebra.
The Baker-Campbell-Hausdorff formula becomes a polynomial with finitely many terms,
which gives rise to a Lie group from the Lie algebra.

10.1 Representations of sl(2)

This is really quite important in math and in physics. We know

C⊗ su(2) ∼= sl(2). (10.6)

So representations of su(2) may be studies by representations of sl(2). We know

SO(3) ∼= SU(2)/Z2, (10.7)

so we can study representations of so(3) too!
For sl(2), we have generators e, f , h with the commutation relations

[e, f ] = h (10.8a)

[h, e] = 2e (10.8b)

[h, f ] = −2f. (10.8c)

We would like to describe all representations of sl(2). For a general Lie Algebra, we take
its Cartan subalgebra h ⊆ Lie(G). Here h is a generator of the Cartan subalgebra. We will
take any rep

ϕ : G → gl(n). (10.9)

So
f 7→ ϕ(f) = F, e 7→ ϕ(e) = E, h 7→ ϕ(h) = H, (10.10)

and the commutation relations are

[E,F ] = H (10.11a)

[H,E] = 2E (10.11b)

[H,F ] = −2F. (10.11c)

We need to find 3 such matrices. We will consider eigenvectors of H called “Weight
Vectors”

H~x = λ · ~x. (10.12)

Once we have one weight vector ~x, we can construct others via use of E and F . We have
from eq (10.11b)

HE = E(H + 2) (10.13)

which, when applied to the weight vector, yields

HE~x = E(H + 2)~x = (λ+ 2)E~x. (10.14)

This implies that E~x is also an eigenvector of H with eigenvalue λ + 2. Thus we have
infinitely many weight vectors, right? Well, this is wrong since E~x could vanish! If E~x = 0,
then ~x is called the “Highest Weight Vector”.

We also have
H(F~x) = (λ− 2)F~x (10.15)

by the exact same reasoning. This means that F~x is also a weight vector. We will now
describe all finite dimensional representations of sl(2).
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Remark 10.1. In finite dimensional representations, H always has an eigenvector.

Lets apply E to ~x many times, so we get new eigenvectors. Then at some moment

HEk~x = 0 (10.16)

for some k since we cannot have an infinite number of distinct eigenvectors. Let

~v := Ek−1~x (10.17)

be the highest weight vector, so
E~v = 0. (10.18)

Let
H~v = m~v. (10.19)

Let
~vk = F k~v, (10.20)

we know
H~vk = (m− 2k)~vk. (10.21)

This is a weight vector. We have
F~vk = ~vk+1 (10.22)

by definition. We should apply

E~vk = EF~vk−1 = (FE +H)~vk−1. (10.23)

We can guess that E raises the eigenvalue. That is

E~vk = γk~vk (10.24)

where γk is some factor.
We can compute

E~vk = FE~vk−1 +H~vk−1 (10.25a)

= F (γk−1~vk−2) + (m+ 2− 2k)~vk−1 (10.25b)

= γk−1F~vk−2 + (m+ 2− 2k)~vk−1 (10.25c)

= (m+ 2− 2k + γk−1)~vk−1 (10.25d)

= γk~vk−1 (10.25e)

This implies that
γk = γk−1 +m+ 2− 2k (10.26)

a recursion relation which permits us to compute γk, an arithmetic progression. We have
our representation be irreducible if and only if

span{~vk} ∼= Cn. (10.27)

We have everything, we just need to compute the γk constants. It turns out that the weights
range from m, m− 2, . . . , −m.

Lecture 11
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We consider representations of sl(2) = A1. We analyzed completely the finite dimensional
representations; the only place where finite dimensions were used was in proving the existence
of the highest weight vector. We reasoned h has eigenvectors. Then we applied e to the
eigenvectors of h, which produced a different eigenvector or zero.

We had the eigenvector
h~v = λ~v, (11.1)

then
h(ek~v) = (λ+ 2k)ek~v, (11.2)

but in the finite dimensional case we get at some moment

en~v = 0 (11.3)

for some n. So in finite dimensions, such a vector always exists. In the infinite dimensional
case, we will assume a highest weight vector exists. Then we will describe all irreducible
representations, we did this basically. Let ~v be such that

e~v = 0, (11.4)

then let
~vk = fk~v, (11.5)

so
h~vk = (m− 2k)~vk (11.6)

and we have “ladder relations”
f~vk = ~vk+1 (11.7)

and
e~vk = γk~vk−1, (11.8)

where γk is some coefficient which requires solving a recursive formula. We have

γk = k(m− k + 1). (11.9)

Lets prove this is an irreducible representation. What does this mean? It doesn’t have any
nontrivial subrepresentations. Suppose we do have some nontrivial subrepresentation, it
should contain at least one vector. Suppose this one vector is of the form∑

ck~vk = ~w. (11.10)

Lets apply to this vector es ~w, what happens? It is pretty clear it should be ~w = ~vs′ where
s′ is some index, this is due to h having an eigenvector in any representation.

We can now apply e and f to ~w, we end up recovering

es
′
~w ∝ ~v0. (11.11)

We made the mistake that
e~vk = k(m− k + 1)~vk−1 (11.12)

exists, i.e. m− k+ 1 6= 0. If m 6∈ Z, then this is an irreducible representation. But if m ∈ Z,
more specifically

k = m+ 1, (11.13)

then
e~vm+1 = 0. (11.14)

So we get an irreducible subrepresentation spanned by ~v0, ~v1, ..., ~vm. So for each m ∈ N, we
have on irreducible representation of dimension m+ 1, so we have m+ 1 = 1, 2, 3, ....
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Now lets discuss the group SU(2), recall su(2) consists of traceless anti-Hermitian
matrices; recall unitary matrices satisfy

A†A = I. (11.15)

The rows and columns form an orthonormal basis:

A =

[
a b
c d

]
(11.16)

so
|a|2 + |b|2 = 1 and |c|2 + |d|2 = 1 and ad− bc = 1. (11.17)

If we know a and b, we can deduce that[
a b
c d

]
=

[
a b

−b a

]
. (11.18)

We can consider the topology here, if

a = a0 + ia1 and b = b0 + ib1 (11.19)

then we are working with a 4-dimensional sphere. We can say that topologically SU(2)
is compact and simply connected. The representations of SU(2) may be identified by
representations of its Lie algebra. We recall

CLie
(
SU(2)

)
= sl(2). (11.20)

We may describe the representations directly.

Remark 11.1. su(2) has a scalar representation, i.e. the most boring representation imaginable
(everything is represented by the unit matrix). It’s trivial, and has dimension 1.

Now we have the vector or “fundamental” representation. It is 2-dimensional. Every
matrix is represented by itself. Let V = C2 be the representation of SU(2). For this special
situation, we can work with polynomials of x, y ∈ C.

That is to say, if {(x, y)} = V , we may take the space of functions on V . We introduce

ψg : ϕ(z) 7→ ϕ(g−1z) (11.21)

which “deforms” ϕ(z) into ϕ(g−1z). If we have

ψh : ϕ(z) 7→ ϕ(h−1z), (11.22)

then we demand
ϕh ◦ ϕg : ϕ(z) 7→ ϕ

(
(hg)−1z

)
. (11.23)

Functions of V are contravariant functors.
This is a reducible representation, since we may restrict our focus to polynomials over

V . Is the space of polynomials an irreducible representation? No! Why? We can have
the subspace of homogeneous polynomials of degree m. So it would be irreducible and
spanned by xm, xm−1y, ..., xym−1, ym which is of dimensions m+ 1. We can deduce the
representation of the Lie algebra. Observe for us in su(2),

h =

[
1 0
0 −1

]
(11.24)

so it corresponds to [
u 0
0 u−1

]
∈ SU(2). (11.25)



Lecture 12 27

How h acts on the basis is that

h : x 7→ ux, y 7→ u−1y. (11.26)

So in effect,
xm−kyk 7→ um−2kxm−kyk, (11.27)

with the Lie algebra u = 1 + ε where |ε|2 � 1. So

um = 1 +mε (11.28)

and so on.

Lecture 12: Representations

Today we will talk about representations, and this is the main part of the class. First
some things about representations. We have a representation be a morphism G→ GL(n,C)
for Lie groups, a Lie algebra representation is a morphism G → gl(n,C). How do we classify
representations? Well, the most important group representations are orthogonal or unitary
in the sense of using an inner product 〈·, ·〉, i.e. morphisms

G→ O(n) and G→ U(n) (12.1)

respectively. However, in the language of Lie algebras

A = 1 + a (12.2)

and the condition is as follows
〈ax, y〉+ 〈x, ay〉 = 0, (12.3)

which for algebras results in morphisms

G → so(n) and G → u(n) (12.4)

respectively for orthogonal and unitary representations.

Theorem 12.1. Unitary and orthogonal representations are completely reducible (i.e. a
direct sum of irreps).

Lemma 12.2. If W is an invariant subspace, then W⊥ is also an invariant subspace.

Lemma 12.2. We have AW ⊆W , where A = ϕ(X) for some X ∈ G. If x ∈W⊥,

〈x,w〉 = 0 (12.5)

for all w ∈W . But
〈x,Aw〉 = 0 (12.6)

since Aw ∈W . But
〈x,Aw〉 = 〈A†x,w〉 = 0 (12.7)

if and only if
A†x ∈W⊥ (12.8)

for every A in our representations. But A† = A−1 = ϕ(X)−1 = ϕ(X−1), so we are done. If
〈x, x〉 ≥ 0 for all x, then V = W ⊕W⊥.
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Theorem 12.1. We have by our lemma, if our representation is irreducible we’re done;
otherwise, we write

V = W ⊕W⊥. (12.9)

We iterate on our summands, until we end up writing

V =
⊕
i∈I

Vi (12.10)

for our representation as a direct sum of mutually orthogonal irreps. For finite dimensional
V , there is only finitely many recursions; note this is the first time finite dimensionality is
used. There is an analogous notion for infinite dimensionality, but we need to use the direct
integral.

Now are all representations unitary or orthogonal? Or...equivalent to unitary or
orthogonal representations? The answer is “No” for the simple reason they are not completely
reducible!

Example 12.3. Consider the one-dimensional Lie algebra R. It has one generator e, and
its commutator

[e, e] = 0. (12.11)

Now to construct a representation of this, how to do this? Send this generator to somewhere
satisfying the commutation relations...but they are always satisfied. So representations of
this Lie algebra are merely all linear operators.

We should classify these representations. Two representations are “involutive” if they
are, as matrices, similar

E′ = A−1EA. (12.12)

Every matrix may be written in Jordan normal form, and that’s it! We’ve classified
everything. We get a series of eigenspaces embedded in each other, but no direct sum of
invariant subspaces for the simple reason every invariant subspace should have an eigenvector.
So this representation is not equivalent to a unitary or orthogonal representation, and it is
not completely irreducible. Only when all the Jordan cells are one dimensional, then the
representation is completely reducible.

The corresponding Lie group to R is R×>0, but there is one more group which corresponds
to the same Lie algebra viz. U(1). Geometrically U(1) is a circle, and its elements are
of the form exp(iϕ). . . there is a whole in this circle, it’s not simply connected. So the
representations of the Lie algebra R does not coincide with representations of the Lie group
U(1). They are related but do not coincide. This group has representations that are
equivalent to unitary representations, moreover are completely reducible; if z = exp(iϕ),
then the representations are given by

z 7→ zn. (12.13)

How to prove all this stuff?
First how to prove all representations of this group are equivalent to unitary ones. Lets

consider any representation
ϕ : U(1)→ V (12.14)

and introduce an inner product on V , i.e. 〈·, ·〉. There are two possibilities: inner product is
invariant (we’re happy, the representation is unitary), or it’s not invariant (it’s not equivalent
to a unitary representation). Then we can make the inner product invariant, namely by
introducing a new inner product

〈〈v2, v1〉〉 =

∫
〈ϕ(g)v1, ϕ(g)v2〉dg (12.15)
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which is already invariant with respect to the group G. Namely

〈〈ϕ(h)v2, ϕ(h)v1〉〉 =

∫
〈ϕ(g)ϕ(h)v1, ϕ(g)ϕ(h)v2〉dg (12.16a)

=

∫
〈ϕ(gh)v2, ϕ(gh)v1〉dg g’=gh, dg’=dg (12.16b)

=

∫
〈ϕ(g′)v2, ϕ(g′)v1〉dg′ (12.16c)

= 〈〈v2, v1〉〉 (12.16d)

For us g = exp(iϕ), gh = exp(iϕ) exp(iθ) = exp
(
i(ϕ+ θ)

)
is merely a shift. So we need a

measure on the circle which is invariant with respect to translations; we have it. We proved
more, really, we almost proved the theorem:

Theorem 12.4. Every complex representation of a compact group is equivalent to a unitary
representation.

The proof is exactly the same, the only thing missing is a lemma.

Lemma 12.5. Every compact group can be equipped with an invariant measure (measure
invariant with respect to shifts).

Really a measure invariant under right (or left) shifts always exists, but may not be
finite for noncompact groups. To fix the measure, fix it in the tangent spaces, but we know
the tangent spaces for Lie groups! For compact groups, left invariant measure coincides with
right measure, and are finite.

Lecture 13

Today we will talk about compact Lie groups. First a few remarks about characters.
Suppose we have

ϕ : G→ GL(n) (13.1)

be a group morphism. We have

Tr
(
ϕ(g)

)
= χϕ(g) (13.2)

be the character at the point g. The character is an invariant of a representation. If ϕ, ϕ′

are two isomorphic representations, so

ϕ′(g) = Aϕ(g)A′ (13.3)

then
χϕ(g) = χϕ′(g) (13.4)

for every g ∈ G. The character is a class function, it doesn’t depend on conjugation

χϕ(aga−1) = χϕ(g). (13.5)

This is basically everything we need. In general, for compact groups G, the characters
determine everything.

Theorem 13.1. If ρ : G → GL(n), ρ′ : G → GL(n) are two representations such that
χρ(g) = χρ′(g) for each g ∈ G, then ρ ∼= ρ′.

For a compact group, we have the invariant volume be∫
1 · dv = 1 (13.6)
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which can be normalized. For a finite group, this integral averaging a function is merely a
sum

f =

∫
f(v)dv for compact groups (13.7a)

=
1

N

∑
g∈G

f(g) for finite groups (13.7b)

We have

〈f, f1〉 =

∫
f∗(v)f1(v)dv = f∗f1 (13.8)

we can compute the norm of characters

‖χ‖ =
√
〈χ, χ〉 =

{
1 if the rep is irreducible

0 otherwise
(13.9)

So we have
〈χi, χj〉 = δij (13.10)

so we have orthonormal characters from an orthonormal basis. Where? For class functions!
Note class functions only depend on conjugacy classes. For example, consider G = U(n),

we can diagonalize any unitary matrix by means of unitary transformations. We have then
diagonal matrices consists of

D =

z1

. . .

zn

 (13.11)

where zk = exp(iϕk), so T ∼= U(1)n the n-torus.
What’s relevant is that T forms a commutative subgroup of U(n). This is the maximal

commutative subgroup for U(n), or the maximal torus. Since every element is conjugate
to this stuff, if we want to know the character, we only need to be concerned about the
character on the torus. But can the character be an arbitrary function here? No, it can’t.
So the characters χ(z1, . . . , zn) is a symmetric function on T , so it is invariant under any
permutation.

Let G be a connected, compact Lie group. Let T be the maximal torus, i.e. the maximal
Abelian subgroup. It will always be a Torus, always a product of U(1). Then every element
of g ∈ G is conjugate (conjugated in G) to an element of T . Not every function on the torus
is a character. We should consider elements of G that form the normalizer of T , i.e.

N(T ) = {x ∈ G | xT = Tx}. (13.12)

We know T ⊆ N(T ) trivially, so to examine the nontrivial part of the normalizer we should
consider the quotient

N(T )/T = W (13.13)

called the “Weyl Group”. The Weyl group acts on the Torus. It is obvious that characters
should be invariant with respect to this group.

Now to Lie algebras. We will work with complex Lie algebras. We will take G to be
a compact Lie group, CLie(G) the complexification of its Lie algebra. The Lie algebras
obtained in this way are “Reductive Lie Algebras”. They have an invariant inner product.
Every representation of a compact group is equivalent to a unitary representation (if complex),
or an orthogonal representation (if real). Lets take a Lie group G, lets take its (real) Lie
algebra

G = Lie(G) = TeG (13.14)
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which is the tangent space to the group at e ∈ G. The group G acts on TeG in the obvious
way. For some x ∈ G, then

gxg−1 ∈ G (13.15)

is an inner automorphism. It maps e 7→ e. So every curve starting at the identity goes to
a curve also starting at the identity, so we can define an action of G on tangent vectors.
This is called the “Adjoint Representation of G”, this is probably the most important
representation. We had a notion of the adjoint representation for Lie algebras, and really
it’s related to adjoint representations of Lie groups. We should consider

g = 1 + γ (13.16)

where γ is “small.” Then the adjoint group representation is

(1 + γ)x(1 + γ)−1 = x+ γx− xγ + · · · (13.17a)

= x+ [γ, x] + · · · (13.17b)

We are concluding that the adjoint representation of the group corresponds to the adjoint
representation of the algebra. Adjoint representation for compact group is equivalent to
an orthogonal representation. There exists an inner product 〈x, y〉 in G which is invariant
under

〈Adgx,Adgy〉 = 〈x, y〉, (13.18)

we see
Ad1+γ+···x = x+ [γ, x] + · · · = x+ adγx+ · · · . (13.19)

(The convention is adjoint representation for the Lie group is written as “Ad” but for the
Lie algebra is “ad”.)

We get
〈[γ, x], y〉+ 〈x, [γ, y]〉 = 0. (13.20)

If G is compact, then Lie(G) is equipped with a nondegenerate positive invariant product
(which is precisely the Eq (13.20) condition). We can extend this to the complexified Lie
algebra CLie(G) but it is a nondegenerate invariant inner product. This is a general result.

Examples. Consider gl(n), we have an invariant inner product 〈x, y〉 = Tr(xy).

Lecture 14

We have defined a reductive Lie algebra as the complexification of the Lie algebra for a
compact group. The Cartan subalgebra (usually denoted h) corresponds to the maximal
torus in the group T ⊆ G is the maximal, Abelian, connected subgroup. Diagrammatically

g
exp- G

h

6

exp- T

6
(14.1)

It is obvious that T = U(1)× · · · ×U(1).
We can see R is the Lie algebra for R×>0 positive reals equipped with multiplication.

Note that
R×>0

∼= R+ (14.2)

is an isomorphism for R+ the reals equipped with addition. This is not a unique Lie algebra,
we should factorize with respect to a discrete subgroup. To get a compact group, U(1)n is
the only choice.

Let G be a compact group. Let G = Lie(G), since T ⊆ G, we see GLie(T ) = H is the
Cartan subalgebra. This is its definition.
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It is tempting to define the Cartan subalgebra as the maximal Abelian subalgebra
of G , but this is wrong. It is clear the Cartan subalgebra is really important, since the
character restricted to the maximal Torus permits us to reconstruct all information of the
representation. We will consider a representation of the Lie algebra

ϕ : G → gl(V ), (14.3)

and we will assume the representation comes from a compact Lie group

Φ: G→ GL(V ). (14.4)

This is true for compact groups, and the corresponding representation of the corresponding
Lie algebra. Consider a representation for an Abelian Lie algebra, it is not necessarily
semisimple; not every representation of Abelian Lie algebras comes from U(1), it comes
from R+. We have for any z, a representation of U(1) is z 7→ zn, n ∈ Z. We can restrict the
representation Φ to the maximal torus, and it is completely reducible. The same may be
said about

ϕ : H → gl(V ) (14.5)

the representation of the Cartan subalgebra, it is completely reducible. What are the irreps of
Ablian Lie algebras? It is very easy to see irreps of Abelian Lie Algebras are one-dimensional;
it may be proven in precisely one million different ways.

Now lets introduce the notion of a “Weight Vector” of a representation ϕ, it is a
vector x ∈ V such that

ϕ(h)x = λ(h)x (14.6)

it is an eigenvector for the Cartan subalgebra, we call λ(h) the weight (it is a linear functional
for the vector space underlying H ). That is to say λ ∈H ∗.

Proposition 14.1. There exists a basis of V consisting of weight vectors.

If we know all the weights, we may compute the character of the representation. Suppose
we write

H =

{∑
k

ξkhk

}
, (14.7)

then any linear function hk 7→ αk acts as∑
ξkhk 7→

∑
ξkαk. (14.8)

There is an exponential map
A 7→ exp(A) (14.9)

that maps A ∈ G to exp(A) ∈ G. If we have a one-parameter family in the Lie algebra tA,
then we have a one-parameter family in the subgroup exp(tA).

Suppose the coordinates of the Lie group is {z1, . . . , zk}, then the basis for the Lie
algebra would be

ξj = log(zj), (14.10)

to recover the group you should exponentiate. We get the maximal torus, and then we can
compute the trace.

We have the adjoint representation

αi(h)Ei = [h,Ei] (14.11)

where Ei is the weight vector for αi(h). Nonzero weights for the adjoint representation
are called “Roots” and weight vectors for the adjoint representation are called “Root
Vectors”.We can give a different definition for the Cartan subalgebra:
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Definition 14.2. The “Cartan Subalgebra” is a maximal Abelian subalgebra that is
completely reducible in (all representations, but in particular) the Adjoint representation.

Consider U(n), and gl(n) = CLie
(
U(n)

)
, the maximal torus here consists of all diagonal

matrix

H =

exp(iϕ1)
. . .

exp(iϕn)

 (14.12)

is the maximal Torus. Here the basis of the weight vectors may be taken to be the standard
basis, the representation is

ρ : U(n)→ Aut(Cn). (14.13)

So we have n weights which are functionals on H .

Lecture 15

Today we will start with some general examples. First some simple constructions of
representations which are quite general. We will consider a representation

ϕ : G→ GL(V ). (15.1)

If we have one representation, we may consider many others related to it. We may use any
natural construction, any functor, will give you something. For example we may consider
the dual space

V ∗ = {v : V → F} (15.2)

This is a contravariant functor. Remember ϕ(g) ∈ GLn if V is finite dimensional; duality is
related by the transpose ϕ(g)T , we may ask ourselves if it is a representation?

We see immediately no it isn’t! Because we may say the transpose(
ϕ(g)ϕ(h)

)T 6= ϕ(g)Tϕ(h)T (15.3)

therefore we do not have a representation. It is simple to cure this, we take(
ϕ(g)T

)−1
=
(
ϕ(g)−1

)T
(15.4)

which is the “Dual Representation”, i.e. the representation on the dual space. We demand
then that (

ϕ(g)−1
)T

= ϕ(g−1)T (15.5)

and then the character of the dual representation is

χdual(g) = Tr
(
ϕ(g−1)T

)
= Tr

(
ϕ(g−1)

)
(15.6)

so
χdual(g) = χ(g−1). (15.7)

There is another operation that is important, namely taking the tensor product. Suppose
V has basis (v1, . . . , vm) and W has basis (w1, . . . , wn), then V ⊗W has basis

(v1 ⊗ w1, . . . , v1 ⊗ wn, . . . , vm ⊗ w1, . . . , vm ⊗ wn) (15.8)

and a vector in V ⊗W is of the form

z = zijvi ⊗ wj =

m∑
i=1

n∑
j=1

zijvi ⊗ wj (15.9)
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where we use Einstein summation conventions where indices upstairs are summed over the
indices downstairs. The dependence on the choice of basis is fictitious. If we have a change
of coordinates in V have the components transform by

xi 7→ x̃i = aijx
j (15.10)

and we consider some arbitrary vector

v = xjvj in V (15.11)

and if we do likewise consider a change of coordinates in W by

yl 7→ ỹl = blky
k (15.12)

where we implicitly sum over k, then we have

w = ykwk (15.13)

describe an arbitrary element. What is the transformation in the coordinates of the tensor
product? It is very simple. We obtain them by

z̃il = aijb
l
kz
jk (15.14)

so if
a = a(g) and b = b(g) (15.15)

for some group element g ∈ G, then

a⊗ b = (a⊗ b)(g) (15.16)

depends on g too. This gives rise to a tensor product of representations, which is a
representation by functoriality.

If we have
ϕ : G→ GL(V ) (15.17)

and
ψ : G→ GL(W ) (15.18)

be representations, then we have the tensor product of representations as

(ϕ⊗ ψ)g(v ⊗ w) =
(
ϕ(g)v

)
⊗
(
ψ(g)w

)
. (15.19)

What about vectors that are not basis vectors? We can use distributivity, if

v = xivi and w = yjwj (15.20)

then by definition
v ⊗ w = xiyj(vi ⊗ wj). (15.21)

In other words, if V and W are G-modules, then V ⊗W is a G-module. We may iterate for
as many G-modules tensored together as possible. We may recall

W ⊗ V ∼= V ⊗W (15.22)

naturally.
We may construct more representations via some gadget called an “Intertwiner” which

is a morphism of G-modules (i.e. preserves commutator, group operation). Sometimes we
use shorthand

ϕgv = gv (15.23)
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for the group action. Then a morphism is

α(gv) = g(αv). (15.24)

If an intertwiner is invertible, we have an equivalence of representations.
If we consider V ⊗ V , then we have a natural intertwiner namely

v ⊗ w 7→ w ⊗ v. (15.25)

This is a natural isomorphism of representations, so nothing changes. If we have V ⊗n,
then we have the symmetric group Sn consisting of intertwiners. So a permutation is an
intertwiner. We may consider vectors x such that

α(x) = x (15.26)

is invariant under such permutations; they form a subspace. More precisely

x = zijvi ⊗ vj (15.27)

and the coefficients are tensors, what we do is consider symmetric tensors which are fixed
points of the intertwiner which implies the coefficients obey

zij = zji (15.28)

for all i, j.
We may consider the subspace obeying

α(x) = −x (15.29)

then the coefficients are
zij = −zji (15.30)

antisymmetric tensors. The symmetric one is denoted by Sym2 V and the antisymmetric by∧2
V . We generalize to the tensor product of n spaces

V ⊗n = V ⊗ · · · ⊗ V

n times

(15.31)

then we get guys with n indices zi1...in . We can apply various demands of indices. We use
the notation

z[ij] =
1

2!
(zij − zji) (15.32)

and

z(ij) =
1

2!
(zij + zji). (15.33)

We may also take tensor products including the dual space and the vector space, for
example

V ⊗m ⊗ (V ∗)⊗n = V ⊗ · · · ⊗ V

m times

⊗V ∗ ⊗ · · · ⊗ V ∗

n times

(15.34)

which results in guys
ai1...imj1...jn

(15.35)

with mixed indices.
We have been talking about groups, but we may consider analogous gadgetry for the

Lie algebra. If we have

(ϕg ⊗ ψg)(u⊗ v) =
(
ϕ(g)(u)

)
⊗
(
ψ(g)(v)

)
(15.36)
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for the Lie group, and we take
g = 1 + γ (15.37)

where γ is “small.” We obtain from the Lie group representation ϕ1+γ a Lie algebra
representation ϕ̃γ , but how does the representation behave under the tensor product of Lie
algebra representations? We have

(ϕ̃γ ⊗ ψ̃γ)(u⊗ v) =
(
ϕ̃γ(u)

)
⊗ v + u⊗

(
ψ̃γ(v)

)
. (15.38)

Why? Well observe that

(ϕ1+γ ⊗ ψ1+γ) = (1 + ϕ̃γ)⊗ (1 + ψ̃γ) (15.39a)

= 1 + ϕ̃γ ⊗ 1 + 1⊗ ψ̃γ

Lie Algebra rep.

+O(ε2) (15.39b)

where ε is the “magnitude” of γ, which is negligibly small in comparison to 1, and 1 is the
identity operator.

Consider the simplest example U(n) and its fundamental representation GL(Cn). The
maximal torus is

T =


e

iϕ1

. . .

eiϕn


 , (15.40)

this corresponds to the Cartan subalgebra consisting of diagonal matrices. The weight
vectors are the standard basis

vi = ei (15.41)

which is 1 for the ith component, 0 for all others. Now it is clear what are the weights,
merely the corresponding components. We may consider the tensor product of two such
representations. The basis is by our definition vi ⊗ vj , and it is very easy to understand

vi ⊗ vj 7→ (ϕi + ϕj)(vi ⊗ vj) (15.42)

is a weight vector. There is a rule for the characters

χϕ⊗ψ = χϕχψ (15.43)

using the characters of the “component” representations. We also have a representation of
symmetric tensors with the basis

vi ⊗ vj + vj ⊗ vi (15.44)

and for a representation of antisymmetric tensors

vi ⊗ vj − vj ⊗ vi (15.45)

up to some overall factor of 1/2. Both bases have almost the same weights ϕi + ϕj , but for
the antisymmetric tensors we require i 6= j.

Lecture 16

If we have
ϕ : G → gl(V ) (16.1)

a representation, and H ⊂ G is the Cartan subalgebra, then we recall a weight vector v is
an eigenvector

ϕ(h)v = λ(h)v (16.2)
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for every h ∈H . We have an adjoint representation

ad: G → gl(G ) (16.3)

where
(adx)v = [x, v] (16.4)

and the weight vectors for this representation are called root vectors, and the weights are
called roots. To define roots and root vectors for G we are solving

[h, v] = α(h)v. (16.5)

We can construct new root vectors from a given root vector by applying ei, fj to it. We
have

[h, e] = α(h)e ⇐⇒ he = eh+ α(h)e (16.6a)

⇐⇒ h(ev) =
(
eh+ α(h)e

)
v (16.6b)

but
hv = λ(h)v =⇒ h(ev) =

(
λ(h) + α(h)

)
ev. (16.7)

This is either zero or another distinct eigenvector.

Proposition 16.1. If v is a weight vector with weight λ and e is a root vector with root α,
then ev is a weight vector with weight λ+ α unless ev = 0.

Now we will introduce a definition. Well several definitions. First we introduce a notion
of a Cartan Matrix which is presented differently in different papers.

Definition 16.2. A “Cartan Matrix” is a matrix A = [aij ] such that

1. aii = 2 are the diagonal components;

2. aij ∈ Z for any i, j;

3. aij ≤ 0 for off-diagonal components;

4. although not necessarily symmetric, if aij = 0 then aji = 0;

5. it should be symmetrizable, i.e. we have a diagonal matrix B such that AB = D is
also diagonal.

Remark 16.3. Most of the time we will work with A nondegenerate, i.e.

det(A) 6= 0 (16.8)

But this is not a necessary condition, so we do not make it part of the definition.

For every classical Lie Algebra, the matrix aij is nondegenerate

det(aij) 6= 0. (16.9)

We have explicitly computed this, so we should look at our answers and nothing more.
The only thing that needs discussion is “Why is A symmetrizable?” We know there exists

a nondegenerate invariant inner product on classical Lie algebras. The adjoint representation
is orthogonal with respect to this inner product, i.e.〈

[h, x], y
〉

+
〈
x, [h, y]

〉
= 0 (16.10)

where h, x, y ∈ G . This could be viewed as a consequence of compact Lie groups having
unitary representations giving invariant inner product.
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We can introduce the Killing form as

〈x, y〉 = Tr
(

adx ady
)

(16.11)

which is an invariant inner product. We may introduce an invariant inner product on the
group

〈Ux,Uy〉 = 〈x, y〉 (16.12)

where U ∈ G, but when U = 1 + uε where ε is “small”, then we get

〈ϕ(u)x, y〉+ 〈x, ϕ(u)y〉 = 0 (16.13)

where ϕ is a morphism. But as a representation we have〈
[u, x], y

〉
+
〈
x, [u, y]

〉
= 0. (16.14)

If we let u = ei, x = fi, y = hj we get〈
[u, x], y

〉
+
〈
x, [u, y]

〉
=
〈

[ei, fi], hj

〉
+
〈
fi, [ei, hj ]

〉
(16.15a)

= 〈hi, hj〉+ 〈fi,−ajiei〉 (16.15b)

This holds if and only if
〈hi, hj〉 == aji〈fi, ei〉

〈hj , hi〉

ww
== aij〈fj , ei〉

ww (16.16)

Using the inner product on the group, we may construct the matrix B = diag〈ei, fi〉 which
implies AB is symmetric.

For every Cartan matrix, we may construct a Lie algebra called a Kac–Moody algebra.
Really simple Lie Algebras are Kac–Moody algebras with additional condition that the
Cartan matrix is positive definite. We will now describe all irreducible representations
of classical Lie Algebras; this is true for all Lie Algebras related to compact groups, and
reductive Lie Algebras.

In reality we may say for every compact group, the corresponding Lie algebras have
precisely the right generators. Moreover, we may classify algebras of compact groups. This
gives us a general theorem for representations of compact Lie algebras. We would like to
explain the notion of a highest weight vector in this situation. Namely the highest weight
vector v is such that

ϕ(ei)v = 0 (16.17)

for all ei ∈ G . Of course this means that

ϕ(h)v = λ(h)v (16.18)

for all h ∈H , then this λ is called the highest weight.
First of all, what is λ(−)? It is a linear functional λ ∈H ∗, i.e.

λ : H → F (16.19)

it is a linear functional acting on the Cartan subalgebra. Then:

1. Irreducible representations contain not more than one highest weight vector, up to a
constant factor;

2. Finite dimensional irreducible representation ⇐⇒ finite dimensional representation
with one highest weight vector;

3. For every λ ∈H ∗ one can construct a unique irreducible representation with highest
weight λ but this representation can be infinite dimensional;

4. (4) is the most important
point!

This representation is finite dimensional if and only if λ(hi) is a non-negative integer.

This gives us a complete description of finite dimensional irreducible representations.
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16.1 Dynkin Diagrams

It is a very convenient way to depict Cartan matrices. Namely first of all the dimension
of the Cartan algebra is called the “Rank of the Lie Algebra”. We have A`, B`, C`, D`
all of rank `.

◦ ◦ ◦ . . . ◦
v1 v2 v3 v`The Dynkin diagram for A` we draw ` vertices and we draw

edges. We have the number of edges connecting vertices vi to
vj be given by the formula using the Cartan matrix

nij = aijaji. (16.20)

Suppose we know B, its diagonal so we only need to keep track of one index really. Since we
suppose we know B, then

aijbj = ajibi (16.21)

implies

bi =
aijbj
aji

(16.22)

we get
nibi = aij

2bj , (16.23)

or equivalently

aij
2 =

nibi
bj

. (16.24)

What is the conclusion? If we know [ni] and [bi], we can compute [aij ].
Let us write down the Dynkin diagrams for the classical Lie groups we have considered.

◦ ◦ ◦ ◦ ◦
◦

◦

1 1 1 1 1
1

1

For Dn we have the diagram drawn on the right for the case
when n = 7 (observe there are 7 vertices). The Cartan matrix
for Dn is symmetric. One can observe this by considering
the adjacency matrix for the graph.

◦ ◦ ◦ ◦ ◦
1 1 1 1 2 For Cn we see the Cartan matrix is not symmetric, but we

can symmetrize it. We find that an−1,nan,n−1 = 2.

◦ ◦ ◦ ◦ ◦
2 2 2 2 1For Bn we see the Dynkin diagram is “the same” as for Cn

but with different labels for the vertices.
Almost all of these groups are simple and almost all of them are not isomorphic. But

almost all. For example, in D2 we have two disconnected vertices for the Dynkin diagram.
So D2 is not simple, it is the direct product of SU(2) at the level of Lie Algebras, and almost
the direct product at the level of Lie groups. So we may examine the Dynkin diagram for
D3 to find:

◦

◦

◦

∼= ◦ ◦ ◦

So we see this is the same Dynkin diagram as for A3 which implies at the level of Lie Algebras

SU(4) ∼= SO(6) (16.25)

but only at the level of Lie Algebras. We similarly have B2
∼= C2 by inspection of the Dynkin

diagrams, but again it is an isomorphism at the level of Lie Algebras.
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Box 16.1 Dynkin Diagrams

The problem we are facing is really two-fold: (a) given a Dynkin diagram obtain the
Cartan matrix, and (b) given the Cartan matrix obtain the Dynkin diagram. This
box is really based off of §4.7 of Kac’s book Infinite Dimensional Lie Algebras. No
secrets among friends: Kac provides the method of, given a Cartan matrix, producing
the Dynkin diagram. We review this, and provide the algorithm going in the opposite
direction. We also consider examples. Throughout A = [aij ] is the Cartan matrix.

Given Cartan Matrix Obtain Dynkin Diagram. The basic idea is that we will
have an n×n matrix A. The Dynkin diagram is a graph that will have n vertices, which
are labeled by integers i = 1, . . . , n. If

aijaji ≤ 4 and |aij | ≥ |aji| (16.26)

then vertices i and j are connected by |aij | lines; moreover if |aij | > 1, then these lines
are equipped with an arrow pointing towards vertex j.

Why do we need an arrow? The idea is that the Cartan matrix is not symmetric,
but has a weaker condition that aij 6= 0 implies aji 6= 0. Since we know the product
by the number of lines, we know the values by considering which direction the arrow
points.

Given a Dynkin Diagram Obtain Cartan Matrix. This occurs more often in
practice (at least, for physicists). What can we know immediately from the properties
of a Cartan matrix? Well, we know

aii = 2 (16.27)

for all i. We know that the number of vertices n gives information about the number of
rows, and the number of columns, of the Cartan matrix — i.e. A is an n× n matrix.
We also know if i 6= j that

aij ≤ 0 and aij ∈ Z. (16.28)

The rest we need to find from the diagram.
If vertex i and j are connected by k lines, then aij < 0. What values can this

component be? Well, if k = 1, then

aij = aji = −1 (16.29)

since there is no arrow, it must be −1. If there are multiple lines, we have an arrow to
indicate which entry

Remark 16.4. Note that in these examples, the vertices are labeled by indices to keep
track of which we are discussing. Usually, the labels of a vertex are the relative (squared)
lengths of the fundamental roots as Gilmore describes it [see Robert Gilmore, Lie
Groups, Lie Algebras, and Some of Their Applications Dover Publications (2002) Ch 8
§III.2 pp 306 et seq.].

N.B. the method we have described are used to deduce a generalized Cartan matrix
from a Dynkin diagram. So if we restrict focus to Dynkin diagrams corresponding to
“strict” Cartan matrices, we recover precisely the same information. But we can do more!
We can consider “closed loops” in our approach! The only requirement we have for our
considerations is that there are less than 4 edges connecting any pair of vertices.

Example 16.5. Consider the Dynkin diagram given by

◦ ◦ ◦ ◦
1 2 3 4
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We see that there are 4 vertices, so immediately we know that the Cartan matrix is
4× 4 and we can write:

A =


2

2
2

2

 . (16.30)

We also see that there is one line connecting vertex 1 to vertex 2, so that means we can
write

A =


2 −1
−1 2

2
2

 . (16.31)

We then observe that there are no other edges connected to 1, so

A =


2 −1 0 0
−1 2
0 2
0 2

 . (16.32)

Similar reasoning holds for vertex 4, it’s connected by a single edge to vertex 3

A =


2 −1 0 0
−1 2
0 2 −1
0 −1 2

 . (16.33)

There are no other edges that connect vertex 4 to any other vertex, so

A =


2 −1 0 0
−1 2 0
0 2 −1
0 0 −1 2

 . (16.34)

We see that there are two lines connecting vertex 2 to vertex 3 and there is an arrow.
The arrow means that

a23 6= a32. (16.35)

The arrow points towards 3, so
|a32| < |a23|. (16.36)

Then we use the fact that there are two edges means that

|a23| = 2 (16.37)

This is sufficient information to conclude

A =


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 . (16.38)

Thus we conclude our example.

Example 16.6. Consider the Dynkin diagram given by

◦ ◦
1 2
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We see that there are 2 vertices, so immediately we know that the Cartan matrix is
2× 2 and we can write:

A =

[
2

2

]
. (16.39)

The two vertices are connected by 3 edges. There is an arrow pointing from vertex 1 to
vertex 2. This implies that

A =

[
2 −3
−1 2

]
. (16.40)

Observe that if the arrow pointed the other way, we would merely have the transpose of
our matrix.

16.2 Returning to Representations

The representations are described by means of highest weight. We had previously

ϕ(ei)x = 0 (16.41)

where x is our highest weight vector, and the highest weight is described by

ϕ(h)x = λ(h)x (16.42)

where λ ∈H ∗ is the highest weight. We should demand λ(hi) ≥ 0, and λ(hi) ∈ Z. We will
now turn our attention to examples.

We will consider the fundamental representations of A`+1 = sl(`+ 1). The fundamental
representation is the representation by (1 + `)× (1 + `) matrices. We found

ei = Ei,i+1 (16.43)

where Ei,j has zero components everywhere except at i, j it is 1. The Cartan subalgebra is

H =


λ1

. . .

λn

 such that λ1 + · · ·+ λ`+1 = 0

 (16.44)

What are the weight vectors here? It is quite clear that the weight vectors u1, . . . , u`+1 are
the standard basis vectors. Observe

hui = λiui. (16.45)

What is the highest weight vector of this representation? We see that

eiuj = 0 (16.46)

unless j = i+ 1 we have
eiui+1 = ui (16.47)

The highest weight vector is clearly u1 because the shift goes down and there is no way
down. This implies the representation is irreducible as the highest weight vector is unique
up to some coefficient. We see that

λ(hi) = δi1 (16.48)

also holds.
What about the tensor product of representations. We find the basis to be uj ⊗ uk and

hi(uj ⊗ uk) = (hiuj)⊗ uk + uj ⊗ (hiuk) (16.49a)
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= (λj + λk)(uj ⊗ uk) (16.49b)

We found all the weight vectors. . . well not really since u1 ⊗ u2 is a weight vector with the
same weight as u2 ⊗ u1, so u1 ⊗ u2 ± u2 ⊗ u1 is again a weight vector. We find the highest
weight vector to be u1 ⊗ u1, but we see that

e1(u1 ⊗ u2) = u1 ⊗ u1 (16.50)

and
e1(u2 ⊗ u1) = u1 ⊗ u1 (16.51)

so it follows that u1 ⊗ u2 − u2 ⊗ u1 is again a highest weight vector. . . so we have 2 distinct
highest weight vectors! This cannot be an irreducible representation. This we know, we may
consider the symmetric and antisymmetric parts of the representation.

Lecture 17

Recall we start with a compact Lie group G, and we are interested in complex represen-
tations of this group. If the group is simply connected, this is the same as representations of
its Lie Algebra

CLie(G) = G (17.1)

which is called “Reductive” if it is obtained in this way. If we have a compact group,
every representation is reducible (i.e. it can be written as the direct sum of irreducible
representations). Moreover if we consider the adjoint representation of this reductive Lie
Algebra, then we may consider it as a matrix Lie Algebra. . . well not entirely. The adjoint
action is

ada x = [a, x] (17.2)

but the center is mapped to zero. Well, the center’s not interesting, so we factorize the
reductive algebra by its center, and we obtain a semisimple Lie Algebra. The maximal
Abelian subgroup is known as the maximal Torus in the group. The corresponding notion
for Lie Algebras is the Cartan subalgebra H .

A reductive Lie Algebra = (center)⊕ (semisimple part) (17.3)

We wish to work with completely reductive representations, so we will talk about semisimple
Lie Algebras. We are looking at representations of H ⊆ G the Cartan subalgebra, which
will be the direct sum of irreducible representations. But they’d be 1-dimensional, since H
is Abelian. So we have a set of eigenvectors

ϕ(h)Xλ = λ(h)Xλ (17.4)

called “Weight Vectors” where we label X with an index λ its “Weight”. These Xλ form
a basis; now we can consider as a representation the adjoint representation. And then simply
we repeat the formulas

[h,Ei] = αi(h)Ei (17.5)

which are weights and weight vectors for the adjoint representation. Well, if

αi(h) 6= 0 (17.6)

then αi(h) are called the “Roots” and the Ei are called the “Root Vectors”. Loosely we
have

basis of G = root vectors + basis of H . (17.7)

Now we will deviate. We would like to give a definition for a simple root, or more
precisely a simple system of roots. Recall if we take a root vector and act by means of
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root vector on the weight vector ϕ(Ei)x we get either a weight vector or we get zero. By
considering the adjoint representation, we have [Ei, Ej ] be either a root vector iff

αi + αj 6= 0 (17.8)

or an element of H iff
αi + αj = 0, (17.9)

or it could be zero. We can try to minimize our work, and find the roots with the property
that all other roots are obtained by means of a linear combination of these guys. These
roots are called “Simple Roots”.

How many simple roots would there be? Well, if

` = dim(H ) = rank(G ) (17.10)

is the number of simple roots α1,. . . ,α` which form a basis of H ∗. We also require that
every other root has the form

α = m1α1 + · · ·+m`α` (17.11)

where the coefficients are all positive, or all negative, but not mixed coefficients. There is
a challenge that such things exist, but it does; moreover we have done this for all classical
groups. If we have a simple system of roots α1, . . . , α` we can form a good basis.

First of for each root, we have a corresponding root vector denoted by e1, . . . , e`. Then
we have −α1, . . . , −α` with corresponding root vectors f1, . . . , f`. This is not the end of
the story. We’ve listed root vectors of this kind. We may consider commutators of

[ei, fi] = hi. (17.12)

They are sitting in H since their weight is

αi − αi = 0. (17.13)

We can take
[ei, fj ] = 0 (17.14)

since it has a weight of
αi − αj 6= 0 (17.15)

which cannot appear by definition we have no mixed coefficients. We have

[h, ej ] = αj(h)ej (17.16)

by construction, since ej are root vectors. Lets denote

[hi, ej ] = aijej (17.17)

where aij = αj(hi). In the same way,

[hi, fj ] = −aijfj . (17.18)

So we’ve obtained this stuff, and this matrix aij is called the “Cartan Matrix” of the Lie
Algebra. We came to the same conclusion from a different starting point. We have introduced
the notion of a simple system of roots, and proven a theorem that such manipulations work.

Recall we are working with classical groups, which are matrix groups. We are finding
the weight vectors of the fundamental representation. We will start with

sl(n+ 1) = An. (17.19)
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This is generated by matrices, the Cartan subalgebra consists of diagonal matrices, with ϕi
on the diagonal such that ∑

i

ϕi = 0 (17.20)

since the matrices are traceless. We can see that the standard basis are the weight vectors,
we will let ui denote the canonical basis. We see thatϕ1

. . .

ϕn+1

ui = ϕiui (17.21)

so we see that ϕi is a functional on H .
What are the roots? The weights of the adjoint representation, we will skip this part.

We need to look at other Lie Algebras. They are defined in a similar way, namely as matrices
preserving some Bilinear form. That is

(x, y) = xTωy, (17.22)

the demand of invariance amounts to

(Ax,Ay) = xTATωAy = (x, y) ⇐⇒ ATωA = ω (17.23)

but if we consider
A = 1 + a (17.24)

for “infinitesimal” a we get

ATωA = (1 + a)Tω(1 + a) (17.25a)

= (ω + aTω)(1 + a) (17.25b)

= ω + (ωa+ aTω) + aTωa

≈0

(17.25c)

So with summation convention we explicitly have

aijωik + ωija
i
k = 0, (17.26)

or if
bjk = ωjia

i
k (17.27)

then our invariance condition amounts to

bjk = ∓bkj (17.28)

for orthogonal groups this is antisymmetric, for the symplectic group it is symmetric. We
have a one-to-one correspondence between bjk and aij , so the conclusion is:

1. for so(n) we have its adjoint representation antisymmetric square of its fundamental
representation

2. for sp(n) we have its adjoint representation be the symmetric square of its fundamental
representation.

That is, the symmetric or antisymmetric parts of V ⊗ V .

Lecture 18

I was absent due to family reasons.
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Lecture 19

Consider gl(n) where the Cartan subalgebra is simply the diagonal matrices, which
we’ll denote by diag(λ1, . . . , λn) or simply (λ1, . . . , λn). By definition the weight vectors are
merely the canonical basis, denoted by ~u1, . . . , ~un with the corresponding weights λ1, . . . ,
λn. This is the fundamental representation. Also −λ1, . . . , −λn are the weights of the dual
fundamental representation, or covector representation.

The adjoint representation consists of matrices (i.e. a tensor with 1 upper and 1 lower
index):

aij ∈ V ⊗ V ∗. (19.1)

Consider the action of
(V ⊗ V ∗)× V → V (19.2)

defined in the obvious way using the map

V ∗ × V → F. (19.3)

At any rate the adjoint representation is precisely this tensor product. So we see that
(λi − λj) are the weights of the adjoint representation. If it is nonzero we call them “Roots”
with the condition that i 6= j. Now gl(n) is not simple, so we should talk about sl(n). We
have in sl(n) the Cartan subalgebra satisfy

λ1 + · · ·+ λn = 0. (19.4)

The roots are (again) the same.
We would like to find simple roots (recall we can decompose roots into positive and

negative, the minimal set of positive roots are called “Simple Roots”). We consider the
situation when i > j and i < j, one should be called “positive”, the other “negative”. We
choose i > j to be negative roots, i < j to be positive roots. Thus λ1 − λ2, λ2 − λ3, . . . ,
λn−1 − λn are the simple roots of sl(n) = An−1, there are n− 1 simple roots.

Now, for SO(2n) we have the fundamental representation be 2n-dimensional. For the Lie
algebra business so(2n) the weights are λ1, −λ1, . . . , λn, −λn (weights of the fundamental
vector representation, to be precise). What are the weights of the adjoint representation?
We know the adjoint representation for so(2n) is

V ⊗ V ∗ = V ⊗ V (19.5)

since
V ∗ = V (19.6)

as far as the representations are concerned. The antisymmetric part preserves the inner
product. The weights of the adjoint representation, we consider ~ui (i = 1, . . . , 2n). When

we take the tensor product we should get ~ui ⊗ ~uj , and for
∧2
V consider

~ui ⊗ ~uj − ~uj ⊗ ~ui for i 6= j. (19.7)

The weights should be ±λα ± λβ . The nonzero guys are the “Roots”. We say that λα + λβ
are the positive roots, −λα − λβ are the negative roots, and λα − λβ be positive iff α < β.
We have λ1 − λ2, . . . , λn−1 − λn be the simple roots. . . but that is not sufficient, we have
n− 1 roots and dim(H ) = n. So we should add λ1 + λn to our list of simple roots. We can
obtain everything by considering these guys. The Dynkin diagram looks like:

◦ ◦ ◦ ◦ ◦
◦

◦

1 1 1 1 1
1

1
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As previously noted in Lecture 16, the Cartan matrix here is symmetric.
The next Lie algebra we will consider is Bn = so(2n+ 1). The Cartan subalgebra is

H =




1
[so(2)]

. . .

[so(2)]


 (19.8)

What are the weights of the fundamental vector representation? They are 0, λ1, −λ1, . . . ,
λn, −λn. The adjoint representation is again

∧2
(V ) and again we are doing the same thing.

We are adding the weights for i 6= j: λi + λj , λi − λj , −λi − λj but we have more, we can
take 0 + λi and 0− λi. What are the positive weights? They are: λi, λi + λj , and λi − λj
for i < j. What are the simple roots? We take λ1 − λ2, . . . , λn−1 − λn, and λn. These are
the n simple roots. But in this situation, the Dynkin diagram is

◦ ◦ ◦ ◦ ◦
2 2 2 2 1

Remember the number of lines connecting the nodes ij are

nij = aijaji. (19.9)

We will get
aij 6= aji (19.10)

the diagonal matrix diag(2, 2, . . . , 2, 1) symmetrizes the Cartan matrix. The root vectors eα
have positive roots, and fα has negative roots. We obtain

[eα, fα] = hα ∈H and [hα, eβ ] = aαβeβ (19.11)

and so on.
For Cn = sp(n), the weights are λα, −λα and the adjoint representation has λα + λβ ,

λα − λβ , −(λα + λβ) for all α, β. The descriptions of the simple roots begins with the same
stuff. The simple roots are λ1 − λ2, . . . , λn−1 − λn, 2λn. We are allowed to add 2 guys,
which is how we get 2λn. The Dynkin diagram is:

◦ ◦ ◦ ◦ ◦
1 1 1 1 2

Observe that this resembles Bn’s Dynkin diagram, but it is different. The diagonalization
here requires the matrix diag(1, . . . , 1, 2).

Lecture 20

We formulated a theorem of the structure of semisimple algebras, then considered
examples. Lets go back. Recall we considered the situation when we had eα, fα, hα
(members of the Lie Algebra) with the relations that

[hα, hβ ] = 0 (20.1a)

[eα, fβ ] = hαδαβ (20.1b)

[hα, eβ ] = aαβeβ (20.1c)

[hα, fβ ] = −aαβfβ . (20.1d)

We see that eα, fα are root vectors, so

[h, eα] = λα(h)eα (20.2)

and similarly
[h, fβ ] = −λβ(h)fβ . (20.3)
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We recall that a mapping
λ : H → F (20.4)

is called a “Root”, it’s a linear functional on H . We see that

λβ(hα) = aαβ . (20.5)

Moreover aαβ should be the Cartan matrix, so

aαα = 2 (20.6a)

aαβ ≤ 0 for α 6= β (20.6b)

aαβ is symmetrizable (20.6c)

We also assume that
det(aαβ) 6= 0 (20.7)

i.e. the Cartan matrix is nondegenerate. We can find the Cartan matrix for semisimple Lie
Algebras. An ideal corresponds to an invariant subspace of the Lie algebra under the adjoint
representation. We know a simple Lie Algebra is simple iff it has only trivial ideals. For
semisimple Lie Algebras, we can partition roots into positive and negative roots. Positive
roots contain a subset that generates all roots, we call this subset “Simple Roots”.

What may be said of representations with this data? We take G a Lie algebra, we take
a representation

ϕ : G → gl(V ) (20.8)

for some vector space V , and we may consider the weights of this Lie Algebra

ϕ(h)~v = α(h)~v (20.9)

and weight vectors ~v (where we take h ∈H ). The root vectors act on weight vectors, namely
ϕ(ek)~v is a weight vector (supposing that ~v was initially a weight vector) with weight α+λk
provided that it is nonzero. Similarly ϕ(fj)~v is a weight vector with weight α− λj , so ϕ(fj)
lowers the weights. The highest weight vector is annihilated by applying ϕ(ei)~v = 0 for all i.
The highest weight vector always exists in in finite dimensional representations, although
this is not necessarily true for infinite dimensional representations.

Theorem 20.1. (The highest weight vector exists in finite dimensional representations.) If
a finite dimensional representation is reducible, then the highest weight vector is not unique.

Why? Well, at least one exists in the finite dimensional case. Why? Trivially, because
in linear algebra the eigenvalue problem has no solution if the matrix is all zeros. We cannot
have that for a nontrivial representation.

Now suppose there exists a representation that is a subrepresentation which will be
irreducible and contains a different highest weight vector. Let us suppose we have highest
weight vector, then we may construct a subrepresentation consisting of fα1

(· · · )fαn
~v This may appear to be

mathematically incorrect, but
the weights are integers
which means at some
moment these would vanish.

which
is a subrepresentation — it is highest weight since

eβ~v = 0 (20.10)

for all β. Suppose our representation is reducible. If this is so, there is a highest weight
vector in the subrepresentation.

Remark 20.2. To prove a representation is irreducible, it is sufficient to prove the uniqueness
of the highest weight vector.

How to classify, to describe representations (especially irreducible representations). This
is a simple thing, namely take this highest weight vector

ϕ(h)~v = α(h)~v (20.11)
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where α ∈ H ∗, and we should calculate α(h1), . . . , α(hn) for all basis elements of the
Cartan subalgebra. We will prove that α(hi) ≥ 0 and α(h) ∈ Z. To prove this is extremely
simple, because – look – we have these commutation relations

span{hi, ei, fi} ∼= sl(2) (20.12)

for fixed i. For this algebra sl(2) we know everything, in particular all finite dimensional
irreducible representations, which is precisely the guys we are interested in. So the repre-
sentation is characterized by n non-negative numbers. So can we take thse numbers in any
way we want? Yes we can, we’ll prove it in the next lecture. We will merely check this
for An. This is interesting by itself. We will later check this for Bn, Cn; the proof will be
constructive.

For An, we have ei = Ei,i+1, fi = Ei+1,i. We see

hi = Ei,i − Ei+1,i+1 (20.13)

What to do? Well, we have first of all n numbers α(h1), . . . , α(hn). We will prove these
numbers may be taken by considering the standard basis in Rn.

We will call the name for these representations “Elementary Representations”.
First it is sufficient to find elementary representations, they represent G in spaces V1,
. . . , Vn. We will take V ⊗m1

1 ⊗ · · · ⊗ V ⊗mn
n , and the highest weights α1, . . . , αn with the

corresponding highest weight vectors ~v1, . . . , ~vn, then the corresponding weight vectors in
V ⊗m1

1 ⊗ · · · ⊗ V ⊗mn
n have weights m1α1 + · · ·+mnαn. If we analyze these weights, we may

consider any representation constructed from the elementary representations.
What to do? Construct the elementary representation, which is very easy. . . we take the

fundamental representation. If (ϕ1, . . . , ϕn) are the coordinates of the Cartan subalgebra
(bear in mind because we work with An we have ϕ1 + · · ·+ϕn = 0 and we work with diagonal
matrices), then the weights are simply ϕ1, . . . , ϕn. The highest weight correspond to ϕ1.
We see

α1(hk) =

{
1 k = 1

0 otherwise
(20.14)

We would like to now note this corresponds to (1, 0, . . . , 0).

We want to consider (0, 1, 0, . . . , 0). This is constructed by considering
∧2

(V ), the
antisymmetric part of V ⊗ V . The highest weight vector is v1 ⊗ v2 − v2 ⊗ v1, and the
corresponding weight is α1 + α2. We see

(α1 + α2)(hk) =

{
0 k 6= 2

1 k = 2
(20.15)

This corresponds to the desired (0, 1, 0, . . . , 0).
The general case we have the highest weight be α1 + · · ·+ αk, which corresponds to the

representation
∧k

(V ) — the antisymmetric part of V ⊗k. The highest weight vector is then
~v[1 ⊗ ~v2 ⊗ · · · ⊗ ~vk].

Lecture 21

Let us discuss some notions important in themselves, namely, the notion of a “Universal
Enveloping Algebra”. Lets start with a Lie Algebra G , and the commutation relations

[eα, eβ ] = cγαβeγ . (21.1)

We want to embed this into an associative unital algebra

G ⊆ U(G ) (21.2)
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in such a way that
[a, b] 7→ ab− ba. (21.3)

We take U(G ) to be unital and associative with generators e1, . . . , en, and with relations

eαeβ − eβeα = cγαβeγ . (21.4)

It is clear in U(G ) we have part which consists of linear guys cαeα which is the Lie algebra
with respect to the commutator, but this is only a small part of the Universal Enveloping
Algebra. It has, first of all, an arbitrary guy written as

c · 1 + cαeα + cαβeαeβ + · · · (21.5)

with quadratic, cubic, and higher order terms. We can consider commutators of these guys,
but note that

eαeβ = eβeα + cγαβeγ (21.6)

so not all of these guys are unique. We may assume that always α ≤ β ≤ γ ≤ · · · . This sum
is finite. The alternative to doing them ordered, we may do them symmetrically.

Remark 21.1. The universal enveloping algebra is an infinite dimensional algebra, even
for the simplest case! Consider cγαβ = 0 for all α, β, γ. So [eα, eβ ] = 0, then U(G ) is a
commutative polynomial algebra of n-variables.

We would like to say

Hom
(
G , gl(n)

)
= Hom

(
U(G ),Matn

)
. (21.7)

We represent the generator eα ∈ G by Eα such that

EαEβ − EβEα = cγαβEγ (21.8)

which specifies (by cγαβ) the representation of the Lie Algebra. That’s pretty important in
physics, we considered such a thing even if not in this vocabulary. Consider Mx, My, Mz

which are all the angular momentum operators, which are precisely a representation so(3).
The commutator of these guys are precisely the commutation relations from the Lie Algebra.
We have the total angular momentum

M2 = M2
x +M2

y +M2
z (21.9)

but this isn’t in G , it’s in U(G ).
The universal enveloping algebra is useful in many relations. What is important is to

consider the center of U(G ). When considering stuff that commutes with everything; it is
sufficient to consider the stuff that commutes with the generators.

Schur’s Lemma. If we have an operator that commutes with all operators in the irreducible
representations of a Lie Algebra, then it is a scalar times the identity.

As a corollary the central element is a scalar, if not it’s an irreducible representation. We
may consider the eigensubspaces, which form a decomposition into irreducible representations.

Now we will talk about the highest weight representation. We have generators eα, fα,
hα (in principle these are either multiplicative or linear basis elements); we may consider
the subalgebras

1. G+ generated by eα (it’s basis as a vector space is all positive roots, although in
principle we can use simple roots since we can obtain all other roots this way);

2. G− generated by fα;

3. H generated by hα.
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When generating the universal enveloping algebra, we use all roots. We use wither the
simple roots or all the roots for the Verma module. We may consider as vector spaces

G = G+ ⊕ G− ⊕H (21.10)

How to construct the highest weight representation? We take the highest weight vector ~v,
and we may apply the operators eα and we get zero

eα~v = 0 (21.11)

for all α. We can apply h ∈H , we get

h~v = λ(h)~v (21.12)

Now we apply fα1
, . . . , fαn

∈ G− and

span{fα1 · · · fαn~v} (21.13)

forms an invariant subspace. Further it forms a representation. Why is this an invariant
subspace? For the simple reason that

[eα, fβ ] = δαβhβ , (21.14)

in the representation it is
[Eα, Fβ ] = δαβHβ (21.15)

and so we may interchange e and f at some price. We can push all the e’s to the right, etc.
So we have some subspace. What if we don’t have it? Then we will construct it. We

will take U(G−), or more precisely U(G−)~v which are the combinations∑
n

cα1···αnfα1
· · · fαn

~v (21.16)

where α1 ≤ · · · ≤ αn. We can define the action of G on this set, and this is called a “Verma
Module”. There is another construction which is more or less immediate.

So for every λ we may construct an infinite dimensional module, an infinite dimensional
representation with highest weight λ. . . and λ is completely arbitrary. It is infinite dimensional.
Why? Well, consider sl(2) where we have e, f , h. We consider all elements of the form fn~v,
then

h(fn~v) = (λ− n)fn~v (21.17)

and in principle it’s an infinite dimensional representation since we are completely arbitrary
here. But is this representation irreducible? We know for sl(2), the representation is
reducible when λ ≥ 0 and λ ∈ Z. At some moment we would get

h(fn~v) = 0 (21.18)

and we would get more importantly

e(fn~v) = 0 (21.19)

we have 2 highest weight vector in the same representation. Which means we can do the
following: we can factorize our representation with respect to this subrepresentation and get
a finite dimensional and irreducible representation.

So for every λ we have an infinite dimensional representation with highest weight λ called
the Verma Module. What can we do? This is not necessarily reducible. If λ(hi) ∈ Z and
λ(hi) ≥ 0, then the Verma module is reducible. Let us take the largest subrepresentations
(well largest nontrivial representations), then the quotient

(Verma Module)/(Largest Nontrivial Subrepresentation) (21.20)
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is a finite dimensional irreducible representation.
The fact it is an irreducible representation is trivial, since we factorized by the largest

nontrivial subrepresentation; if we have a subrepresentation in the quotient, then there’s a
larger nontrivial subrepresentation in the Verma module, which is impossible. The nontrivial
part is the finite dimensionality of the irreducible representation.

Lecture 22

Now we will give another construction of the Verma module. Really, it will be a
general case of our particular construction called “Induced Representations”. We will
talk about representations of associative algebras, it is more general than representations of
Lie Algebras (since we may construct for any Lie Algebra G with its universal enveloping
algebra U(G ) ). So representations of G and U(G ) are precisely the same. Therefore we
will consider representations of an associative algebra A . To ever x ∈ A we assign a linear
operator

x̂ : V → V. (22.1)

We have
x̂y = x̂ŷ. (22.2)

We would like to say that representations of A is the same as a left A -module. An A -module
is a vector space V and we have multiplication by elements of A (so we may consider x~v
for x ∈ A and ~v ∈ V ). We may think of it as a vector space over A . We should have the
standard relations for a sort of associativity

(xy)~v = x(y~v). (22.3)

This is precisely what we have if we write

x~v = x̂~v. (22.4)

We see
(xy)~v = x(y~v) ⇐⇒ x̂y = x̂ŷ (22.5)

If we can talk about left modules, we may talk about right modules. What does it
mean? Well A -scalar multiplication occurs on the right, i.e. we have

(~vx)y = ~v(xy) (22.6)

We write
~vx = x̃~v (22.7)

is it a representation? Not really, observe

x̃y = ỹx̃. (22.8)

We may say a right module is a representation of A op, where A op has multiplication defined
by x · y = yx.

Example 22.1. A left module could be A , but this is also a right module. Or we may say
that A is a bimodule, i.e. a left and a right module such that

(xa)y = x(ay) (22.9)

for all x, y, a ∈ A .
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Now we would like to define the tensor product of algebras. If we have a right module
VA and a left module AW , both over the associative algebra A , then we may take the
tensor product as modules

VA ⊗
A

AW =
V ⊗W

V a⊗W ∼ V ⊗ aW
(22.10)

as vector spaces, and we identify

~va⊗ ~w ∼ ~v ⊗ a~w (22.11)

which is the definition of taking the tensor product over A . The tensor product describes
bilinear functions

f : V ⊗W → Z (22.12a)

v ⊗ w 7→ f(v, w) (22.12b)

be bilinear.
This means that bilinear functions of A -modules would be such that

f(va, w) = f(v, aw). (22.13)

A really nice picture occurs when we work with bimodules, or (A ,B)-modules. We have
A , B be associative algebras. An (A ,B)-module is simultaneously a left A -module and a
right B-module. The corresponding operation should commute. We have

(av)b = a(vb) (22.14)

be such a condition. In particular, what is an (A ,A )-module? It is something we called a
“bimodule”. Suppose we have an (A ,B)-module A VB and a (B,C )-module BWC then we
may consider

A VB⊗
B

BWC (22.15)

by identifying
vb⊗ w ∼ v ⊗ bw. (22.16)

We can say that V ⊗
B
W is an (A ,C )-module. We see that

a(v ⊗ w) = (av)⊗ w. (22.17)

Is it possible to do this with the relation

vb⊗ w ∼ v ⊗ bw? (22.18)

We assert the multiplication by a is compatible with this equivalence because, well, it is:

a(vb⊗ w) = a(vb)⊗ w (22.19a)

= (av)b⊗ w (22.19b)

∼ av ⊗ bw (22.19c)

= a(v ⊗ bw) (22.19d)

Example 22.2. Lets take a simple example B ⊆ A a subalgebra. Suppose we have a
B-module BV . We would like to get an A -module. How to do this? Look, we consider A
our algebra as an (A ,B)-module, now we take the tensor product of these guys over B

A AB⊗
B

BV (22.20)

which is an A -module.
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We have G ⊇ G ′. Let A = U(G ), B = U(G ′). It is obvious that

A ⊇ B (22.21)

Suppose we have a representation of G ′ we recall this is a G ′-module, which is precisely the
same as a U(G ′)-module; lets call this thing V . We get the

U(G )⊗
B
V (22.22)

a G -module. This is precisely the notion of an “Induced Representation of Lie Alge-
bras”.

For the Verma module, we have

G = G+ ⊕H ⊕ G− (22.23)

there is a highest weight vector ~v. We have for h ∈H ,

h~v = λ(h)~v. (22.24)

For
G+~v = 0 (22.25)

So we write
G ′ = G ⊕H (22.26)

which is a subalgebra. The one-dimensional G ′-module is span{~v}. This gives us a represen-
tation of G+ too. We can write that the Verma module is an induced module

U(G )
⊗
U(G ′)

Vλ (22.27)

where Vλ is precisely the span{~v}, λ is precisely the highest weight. The only that remains
is to prove that (22.27) is precisely the Verma module. We see that

U(G−)~v = U(G )
⊗
U(G ′)

Vλ (22.28)

we did prove something before (although perhaps not in this name): the Poincaré-Birkhoff-
Witt theorem. We proved something about the structure of U(G ), namely

G = {E1, . . . , En} (22.29)

so Poincaré-Birkhoff-Witt
theoremU(G ) = {c0 + ciEi + cijEiEj + · · · } (22.30)

but such a representation is not unique: it may be made unique by (1) demanding i ≤ j;
or (2) that cij , cijk, and all the other coefficients, be symmetric in its indices. This is
the Poincaré-Birkhoff-Witt theorem. Then it is clear that U(G ) is on the left hand side
of the tensor product; what is not clear is this identity. We speak of all possible roots
E = {ei, fi, hi}.

Lecture 23

Today we will talk about spinor representations.
Now we will repeat what we know about sl(n). For this Lie algebra, we can construct

all irreducible representations as tensor representations. What does this mean? We have the
fundamental representation V , we can take tensor powers V ⊗ · · · ⊗ V and there are a lot of
invariant subspaces there. All irreducible representations are equivalent to representations
in one of these invariant subspaces, we can give a more precise result. The algebra sl(n) has
Cartan subalgebra of rank n− 1, we can draw the Dynkin diagram for An−1 as
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◦ ◦ ◦ . . . ◦
k1 k2 k3 kn−1

We assign to each node a number. When we take n− 2 nodes to be zero, and one node to
be 1, we can get an elementary representation. This corresponds to

∧k
V . Here we have the

highest weight vector
~vk ∈

∧k
V (23.1)

then we take ⊗
(
∧k

V )⊗nk and
⊗

~v⊗nk

k (23.2)

will be the highest weight vector with weight (n1, . . . , nk, . . . ). This representation is
reducible, but we can get an irreducible part.

We can restrict our attention to any subgroup of SL(n), in particular SO(n), or more
precisely so(n). Not all representations of so(n) are tensor representations, not all of them
may be embedded in this tensor representation. Remember for Dn = SO(2n) the Dynkin
diagram is of the form

◦ ◦ ◦ ◦ ◦
◦

◦

1 1 1 1 1
1

1

and for Bn = SO(2n+ 1) the Dynkin diagram is

◦ ◦ ◦ ◦ ◦
2 2 2 2 1

There are some special nodes. We have really from the left (n− 2) nodes in Dn:

• • • • •
◦

◦

the solid nodes are precisely when we get the same situation as An−2. For the special
nodes, putting 1 as the value on the black nodes gives special representations called “Spinor
Representations”. We want to construct spinor representations. The main tool will be
Clifford Algebras.

What is the Clifford Algebra? It is a unital associative algebra with generators e1, . . . ,
en and relations

eαeβ + eβeα = 2ηαβ · 1 (23.3)

where ηαβ are numbers and form a symmetric matrix

ηαβ = ηβα. (23.4)

We will require the matrix be degenerate

det(η) 6= 0 (23.5)

but really we can impose the opposite condition

η = 0 (23.6)

and we get what is called a “Grassmann Algebra”. We can reduce everything to these
two opposite conditions. We can consider any field, but we will work with C.

What is important is that ηαβ may be diagonalized. For complex numbers this shows
all Clifford Algebras of a given dimension are isomorphic. So we may choose ηαβ as we’d
like. And we choose

η =

[
0 1
1 0

]
(23.7)
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when n = 2m (for some m ∈ N). We have two sorts of generators, lets denote generators by

symbols a†i , ai. Then the defining relations will be of the following form

aia
†
j + a†jai = 2δij (23.8a)

a2
i = 0 (23.8b)

which gives us
aiaj + ajai = a†ia

†
j + a†ja

†
i = 0. (23.9)

Physicists give a different name for this stuff, referring to it as “Canonical Anticommu-
tation Relations”, and ai, a

†
i play the role of creation and annihilation operators. What

may be said of the representations for this Clifford Algebra. It is extremely simple: when
n = 2m, C`(n) has only one irreducible representation. By the way, Physicists also have
another name for representations of C`(n): representations of Clifford Algebras are called
“Dirac Matrices”. We are sending

eα 7→ Γα (23.10)

generators to matrices which obey

ΓαΓβ + ΓβΓα = 2ηαβ · 1. (23.11)

We would now like to prove: if we require irreducibility, then we will have only one irreducible
representation of Clifford Algebras.

So how to prove this? It is very simple and more or less based on the idea of the highest
weight vector, although in this situation it is named the vacuum vector φ Vacuum Vector φ generalized

version of highest weight
vector

. The Fock Vacuum
vector φ is annihilated by all ai

aiφ = 0 (23.12)

for all i. Here we can consider a†i1 · · · a
†
in
φ, we may take arbitrary linear combinations of

these guys. We can define the action of a on these guys. We just use the relations

aia
†
j = 2δij1− a†jai (23.13)

and we are golden.
We have some questions. Maybe this vacuum vector does not exist at all. We construct

this sum
N̂ =

∑
i

a†iai (23.14)

observe that we may consider eigenvectors of N̂ :

N̂ψ = Nψ (23.15)

which always exist for non-trivial finite-dimensional representations. We see

a†i : N 7→ N + 1 and ai : N 7→ N − 1. (23.16)

We have

N̂(aαψ) =
∑
i

a†iaiaαψ (23.17a)

= aα(N − 1)ψ (23.17b)

We cannot go down indefinitely, and the number operator does indeed exist. The represen-
tation is irreducible iff the vacuum vector is unique (it is more or less obvious, if we had
reducibility we’d have another vacuum vector). It is very easy to show that there is only
one irreducible representation, and all other representations are direct sums of irreducible
representations.
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Remark 23.1. How to realize this representation? We can consider the Grassmann algebra
with n variables, we have “functions of anticommuting variables” in the jargon of physicists.
We may multiply by αi and differentiate with respect to them ∂/∂αi. Differentiation amounts
to “canceling after moving to the left.” These two operators give a Clifford Algebra.

The question is why do we need this? Elements of the orthogonal group generate
automorphisms of the Clifford algebra. What does this mean? It means if we take generators
ei of the Clifford algebra, and we use the transformation

ẽj = aj
iei (23.18)

and we assume aj
i is an orthogonal matrix, then it is clear that the commutation relations

for ẽ are precisely the same as for e. We see

ẽiẽj + ẽj ẽi = 2ηij · 1 (23.19)

In other words, if we have Dirac Matrices, then we can obtain “new” Dirac matrices by
using precisely the same orthogonal transformation:

Γ̃i = ai
jΓj . (23.20)

We only have one irreducible representation, so

Γ̃i ∼ Γi (23.21)

should be similar. Is this matrix unique? That is we have matrices Ua indexed by elements
of the orthogonal group such that

Γ̃i = UaΓiUa−1 , (23.22)

we can replace
Ua 7→ λUa. (23.23)

We demand
UaUb = λUab (23.24)

for the simple reason that we may perform 2 change of coordinates. This is a small problem,
the Ua specify a representation of the orthogonal group called the “Spinor Representation”
of the orthogonal group. It is a projective representation due to this pesky λ.

Lecture 24

We have a Clifford algebra over any field F, we take some nondegenerate matrix η, and
we look for generators obeying

ΓαΓβ + ΓβΓα = 2ηαβ · 1 (24.1)

This is a representation of a Clifford algebra, they may be classified quite easily:

1. all representations are irreducible;

2. the symmetric matrix ηαβ is a symmetric (m,n)-form, which corresponds to C`(m,n,R).

We have orthogonal groups O(m,n,R) for the metric which is similar to

g = diag(+1, . . . ,+1︸ ︷︷ ︸
m +1’s

,−1, . . . ,−1︸ ︷︷ ︸
n −1’s

) (24.2)

If we take
Γ̃α = aα

βΓβ (24.3)

(using Einstein summation convention) and aα
β ∈ O(η,F), then the commutation relations

are preserved.
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Classification Theorem for Representations of Clifford Algebras. There is only one
irreducible representation for C`(2n) for each dimension, and other irreducible representations
in the same dimension are equivalent:

Γ̃α = UaΓαUa
−1 and Uab = (constant)UaUb (24.4)

and we cannot set this constant to be unity.

Consider SO(3), odd-dimensional guys. The situation is a little different. How to
construct representations of the group in odd dimension? Recall

SO(2n,C) ⊆ SO(2n+ 1,C) (24.5)

is an embedding. We may construct Γ1, . . . , Γ2n which obey the desired relation. After that,
the theorem is: we may add the last matrix in such a way that the commutation relations
are satisfied. The construction is very simple:

Γ2n+1 = Γ1(· · · )Γ2n (24.6)

up to some constant. We should quickly verify that Γ2n+1 satisfy the desired properties, e.g.

Γ2
2n+1 = 1. (24.7)

It is very clear that
Γ2

2n+1 = ±1 (24.8)

so we merely choose the coefficient to make it unity. Therefore we may extend any irreducible
representation of the Clifford Algebra over 2n-dimensions to be an irreducible representation
of C`(2n+ 1), with an appropriate choice of coefficient. This may be done in two ways really
(up to sign).

Lets compute the dimensions. C`(2n) has one irreducible representation. What is its
dimensions? It is

2n = dim
(
C`(2n)

)
(24.9)

Why? We have our guys divided into 2 parts, creation and annihilation operators, and we
may apply them to a vacuum state. The rest follows trivially.

Consider C`(2n+1) we have 2 irreducible representations both of dimension 2n, since we
considered irreducible representations and added 1 Dirac matrix generator. For, e.g., n = 1,
we get C`(3) and moreover we have an irreducible representation of SO(3) of dimension
21 = 2. But a 2-dimensional representation of SO(3) does not exist! What does exist is

SU(2)→ SO(3) (24.10)

which is a 2-sheeted covering. We may take the inverse mapping:

SO(3)→ SU(2) (24.11)

which is a 2-valued representation. This is precisely the spinor representation.

24.1 Review of Previous Stuff

Here we will stress several points which should be stressed. There is a notion of a
“Reducible Representation”, i.e. a representation with a nontrivial subrepresentation
(an invariant subspace). There is a notion of “Completely Reducible Representation”
which is the direct sum of irreducible representation. Is an irreducible representation
completely reducible? Yes! It is! Really, it is ρ = ρ.

Remember unitary and orthogonal representations are completely reducible, representa-
tions of a Lie algebra/group are not necessarily reducible (standard example: Abelian Lie
algebra, u(1)k which has more representations since U(1) is not simply connected).
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Irreducible representations of an Abelian Lie algebra are always 1-dimensional, but
this doesn’t mean that every representation of the Abelian Lie Algebras are direct sums
of irreducible representations. For a representation onto a matrix with not normal Jordan
form, the representation is not completely reducible; for the representation of the single
generator by a diagonalizable matrix, we get the direct sum of 1-dimensional irreducible
representations.

Remember

Reductive Lie Algebra = (Center)⊕ (semisimple part) (24.12)

It has a non-trivial center which is an Abelian Lie Algebra.
The Cartan subalgebra is a maximal Abelian subalgebra, but this is not the end of the

story because we should have some sort of requirement of semisimplicity. It was defined
as the Lie Algebra of the maximal Torus for a compact group. What does “maximal”
mean? If we add anything else, it become non-Abelian. But it is WRONG to state
it contains every Abelian subalgebra. Consider gl(n), the Cartan subalgebra consists of
diagonal matrices. . . but we should have a basis. If we change basis, we get a completely
different Cartan subalgebra. . . well, a conjugate Cartan subalgebra. Really, 2 maximal Tori
are conjugate; this is a nontrivial statement. Care needs to be taken when working with a
Cartan subalgebra.

We have a similar situation with simple roots, and the highest weight representation.
We need additional data to introduce these notions. There is no intrinsic information in the
Lie Algebra. The first choice is to fix the Cartan subalgebra H . Then we decompose the
Lie Algebra into 3 parts:

G = G+ ⊕H ⊕ G− (24.13)

where this direct sum is as vector spaces. Each summand is a subalgebra. We have a basis
consisting of 3 types of elements

Ei ∈ G+ (24.14a)

Hk ∈H (24.14b)

Fj ∈ G− (24.14c)

The commutation relations are nontrivial. The computations may not be made component-
wise. We can define the highest weight vector ~v by

Ei~v = 0 (24.15)

for all Ei ∈ G+ and
Hk~v = λ(Hk)~v (24.16)

where
λ : H → F (24.17)

is a linear functional called the “Highest Weight”. This picture is not terribly convenient,
we’d like one with more information. Namely a system of multiplicative generators denoted
by lowercase letters: eα, hα, and fα. We take Ei as the roots of Lie Algebra, so

[H,G+] ⊆ G+ (24.18)

thus
[Hk, Ei] = α(Hk)Ei (24.19)

are root vectors Ei and roots α(Hk). We see the commutator of root vectors is a root vector
again [Ei, Ej ] with root αi + αj . We consider the eα sufficient to generate all Ei, and fj
sufficient to generate all Fj .
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Lecture 25

The goal here on out is twofold: (1) the Virasoro algebra is important, (2) we will be
forced to reconsider the relevant theorems for semisimple Lie algebras. We will touch upon
the notion of central extensions explicitly.

Definition 25.1. Lets suppose we have a group (G/N) and N ⊆ G is a normal subgroup,
or more precisely N ⊆ Z(G). Let H := G/N . Then G is a “Central Extension” of H.

Example 25.2. Consider GL(V ), consider its center which consists of scalar matrices

N = { cI : c ∈ C }. (25.1)

We have PGL(V ) be the “projectivization” of GL(V ), and GL(V ) is the central extension
of PGL(V ) = GL(V )/N .

The notion is very close to the notion of a “Projective Representation” where we
have

UaUb = c(a, b)Uab (25.2)

the product be up to a factor c(a, b) which may depend on a and/or b. We have Ua ∈ GL(V ),
denote

[Ua] ∈ PGL(V ) (25.3)

Therefore we may write
[Ua][Ub] = [Uab] (25.4)

We may alternatively think of a projective representation as a morphism

ρ : G→ PGL(V ). (25.5)

One more thing to say is we may consider the situation when G is a central extension
of H. This means

H = G/N. (25.6)

Then we may say an irreducible (complex) representation ρ of a group G gives us a projective
representation of H. The image of ρ(N) commutes with the image ρ(G), so by Schur’s
lemma

ρ(N) = {cI}. (25.7)

for each scalar c ∈ C. So then ρ(H) is “up to constants” ρ(G). We have this situation be
described by demanding the diagram

G
ϕ- GL(V )

H
?

6

ϕ̃

-

(25.8)

We lift h to G in many ways, we get a multivalued map

ϕ̃ : H → GL(V ) (25.9)

This is precisely a projective representation.
There is a parallel notion for Lie Algebras. We have

G /N = H , (25.10)

and we have that N ⊆ center of G . Then we have G be the central extension of H .
Everything may be repeated, with small changes of course. For groups it is difficult to lift a
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quotient group H to the group G; for Lie algebras, we may lift it as linear spaces. If we
have a surjective morphism V →W of vector spaces, we may lift it in th following way: find
W̃ ⊆ V such that W̃ ∼= W . Then we have

V = W̃ ⊕ (something) (25.11)

this is something special for vector spaces. So therefore for Lie Algebras we may say that

G = H ⊕N (25.12)

as vector spaces!! Does it work for the direct sum as Lie Algebras?
For simplicity we will consider N = {λc} where λc ∈ C and c is one single generator.

We can now say that g ∈ G may be represented as

g = h+ λc (25.13)

for some h ∈H . The general properties are really clear. Suppose we have the commutator

[g, g′] = [h+ λc, h′ + λ′c] (25.14a)

= [h, h′] + [λc, h′] + [h, λ′c] + [λc, λ′c]︸ ︷︷ ︸
=0 since c is in the center

(25.14b)

So we find

[h, h′]new = ϕ(h, h′)

element in H

+

Element in N

λ(h, h′) ·c (25.15)

This is our new commutator, if we factorize with respect to N , we get a morphism

G →H (25.16)

The formula is as follows

[h, h′]new = [h, h′]old + λ(h, h′) · c (25.17)

which is precisely our central extension. Note that [·, ·]new is the commutator in G , and
[·, ·]old is the commutator in H . Can we use any λ(h, h′)? Of course not, otherwise it’d be
too easy. We want the new bracket to form a Lie Algebra. So it needs to obey the condition
of antisymmetry (which is easy), but also the Jacobi identity.

25.1 Spinor Representations

How to construct spinor representations in the language of Lie Algebras? Remember the
Clifford algebra is an algebra with generators γµ and the anticommutator of these generators
is

γµγν + γνγµ = 2ηµν · 1 (25.18)

where ηµν is a symmetric, nondegenerate matrix. So a representation of the Clifford algebra
is given by the Dirac matrices

ΓµΓν + ΓνΓµ = 2ηµν · 1 (25.19)

We know something about the representations of Clifford algebras. We will denote C`(n)
as the n-dimensional Clifford algebra. Now what we would like to do, since C`(n) is an
associative algebra, is to note it is also a Lie algebra:

[Γa,Γb] = ΓaΓb − ΓbΓa (25.20)
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We will divide our Clifford algebra into parts, a standard trick! The general element
a ∈ C`(n) can be written as

a = a0 · 1 + aµΓµ + aµνΓµΓν + · · · (25.21)

We will now consider elements only up to quadratic terms. Is it a subalgebra? Not
exactly. . . but if we use the Lie algebra operation, we get a Lie subalgebra. Why is this true?

First of all, constant terms drop out of the commutator, and

[Γµ,Γν ] = something quadratic (25.22)

But what about
[ΓµΓν ,ΓρΓσ] =? (25.23)

Well, we see first of all that

[Γα,ΓβΓγ ] = ΓαΓβΓγ − ΓβΓγΓα (25.24a)

= ΓαΓβΓγ − Γβ(−ΓαΓγ + 2ηαγ · 1) (25.24b)

= ΓαΓβΓγ + ΓβΓαΓγ − 2ηαγΓβ (25.24c)

= (ΓαΓβ + ΓβΓα)Γγ − 2ηαγΓβ (25.24d)

= 2ηαβΓγ − 2ηαγΓβ (25.24e)

Then we take advantage of the identity of the commutator

[AB,C] = A[B,C] + [A,C]B (25.25)

to find

[ΓµΓν ,ΓαΓβ ] = Γµ[Γν ,ΓαΓβ ] + [Γµ,ΓαΓβ ]Γν (25.26a)

= 2Γµ(ηναΓβ − ηνβΓα) + 2(ηµαΓβ − ηµβΓα)Γν (25.26b)

= 2ηνα(−ΓβΓµ + 2ηµβ1)− 2ηνβ(−ΓαΓµ + 2ηαµ1) + · · · (25.26c)

= 4(ηναηµβ − ηνβηµα)1

+ 2(ηµαΓβΓµ − ηµβΓαΓν − ηναΓβΓµ + ηνβΓαΓµ) (25.26d)

∼ aΓσΓτ + b · 1 (25.26e)

We find that a ·1+ ΓµΓνa
µν is itself a Lie subalgebra. What is this Lie algebra? We may say

that aµν may be restricted, due to the anticommutation relation any symmetric combination
disappears. So

aµν = −aνµ (25.27)

is an antisymmetric matrix. It is pretty clear it is the orthogonal Lie algebra, as it is
described by means of antisymmetric matrices. But we have this extra stuff, so we have
no chance for it to be an orthogonal Lie Algebra, but it is the central extension to the
orthogonal Lie algebra. Moreover it is the trivial central extension.

Lecture 26

Last time we considered Clifford algebras and its representation by gamma matrices

ΓµΓν + ΓνΓµ = 2ηµν · 1 (26.1)

We can consider part of this business which is spanned by

a1 + bµνΓµΓν (26.2)
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zero order terms and quadratic terms. This is a subalgebra of the associative algebra. We
may consider it with an induced Lie algebra structure. We consider the coefficients of the
quadratic term

bµν = −bνµ (26.3)

to be antisymmetric. Moreover this is an “almost” orthogonal Lie algebra.
We will introduce new notation

Γµν =
1

2
(ΓµΓν − ΓνΓµ). (26.4)

This implies that
Γµν = −Γνµ. (26.5)

We also observe that

Γµν =
1

2
(ΓµΓν + ΓµΓν − 2ηµν1) (26.6a)

= ΓµΓν − ηµν · 1 (26.6b)

This is something created in such a way it gives us an orthogonal Lie algebra. We may take
aµνΓµν requiring4

aµν = −aνµ. (26.7)

If we take the commutator of

[aµνΓµν , bρσΓρσ] = CαβΓαβ (26.8)

where
C = [a, b]. (26.9)

The only thing we should check, that’s not so easy, is that the scalar part goes away. We
see by adding a scalar part, we get a central extension of so(n). This is a trivial central
extension, we managed to separate it into 2 parts. A representation of Clifford algebra
gives us a representation of the orthogonal algebra called the “Spinor Representation”.
For so(2n), i.e. Dn, we get a reducible representation — alternatively, for public relations
reasons, we say we get 2 irreducible representations. The spinor representation corresponds
to the Dynkin diagram:

◦ ◦ ◦ ◦ ◦
◦

◦

0 0 0 0 0
1

0

So lets consider all this stuff in the case when the Lie algebra is so(2n). In this case,
remember what did we do? We constructed the Clifford algebra in such a way

η =

[
0 1
1 0

]
, (26.10)

and instead of the Γ we took a† and a with the anti-commutation relations

[ai, aj ]+ = [a†i , a
†
j ]+ = 0 (26.11a)

[ai, a
†
j ]+ = 2δij (26.11b)

Of course this describes the canonical anticommutation relations; this is of course a Clifford
algebra, or more precisely a particularly case of it.

4Although this requirement is not really necessary. We can write aµν as the sum of the symmetric and
antisymmetric part. But if sµν is symmetric, then sµνΓµν = 0 always.
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We have proven in any finite dimensional representation there is (for Clifford algebras)
a vacuum vector φ such that

aiφ = 0 (26.12)

for all ai. We have a basis by applying the creation operators to φ our vacuum: a†i1(· · · )a†ikφ
(where i1 < · · · < ik), it follows

(a†i )
2 = 0 (26.13)

for all i, so we need the indices to be strictly ordered. We have a spinor representation here,
we should consider these guys Γµν . But really what will we do? We will only write ΓµΓν ,
we should write the constant part

a†ia
†
j − ηij1 (26.14)

but
ηij = 0 (26.15)

in this instance, so we have terms of the form

a†ia
†
j and aiaj (26.16a)

1

2
(a†iaj − aja

†
i ) = a†iaj −

1

2
δij (26.16b)

These are the generators of the spinor representation acting on the Fock space; it is reducible.
Look at the number of a†’s and a’s — they’re always even. The parity is preserved. The
Fock space is the sum of two parts

F = Fodd ⊕Feven (26.17)

where even/odd refer to the number of a†’s. So we have 2 representations, one is called the
“Left Spinor Representation” and the other is surprisingly enough the “Right Spinor
Representation”.

We want to check these representations are irreducible. How to do this? Take the
Cartan subalgebra of this stuff. The Cartan subalgebra is generated by

hi = a†iai −
1

2
. (26.18)

What we see here is something similar to one of the exercises, with Dn we had elements of
the form

x =

[
A B
C D

]
(26.19)

written in block form, where

B = −BT (26.20a)

C = −CT (26.20b)

D = −AT (26.20c)

describe the n× n block components. We know the Cartan subalgebra, we should take the
simple roots, although this is unnecessary. We decompose the algebra into three parts:

algebra = (positive)⊕ (negative)⊕ (Cartan). (26.21)

Let us take
a†ia
†
j ∼ B (26.22)

be the negative part,
aiaj ∼ C (26.23)
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for the positive part. We have additionally

αij(a
†
iaj −

1

2
δij) (26.24)

where αij is the Cartan matrix. There are two places to make a choice: positive guys
form a Lie algebra, and the negative guys form a Lie algebra too. These choices should be
compatible, how they form Lie algebras should be done compatibly. Now the highest weight
vectors must be determined. We have φ as the highest weight vector, but we see that

aj(a
†
iφ) = 0 (26.25)

for all a†i and aj . But only one of them is the highest weight vector, really. Since we can
decompose F into two irreducible representations, we have two highest weight vectors.

What we would like to do now is consider infinite-dimensional Clifford algebra. This is
taught all the time in physics, there are an infinite number of creation/annihilation operators

for fermions. What to do? We have creation and annihilation operators a†i , ai which obey
the canonical anticommutation relations

[ai, aj ]+ = [a†i , a
†
j ]+ = 0 (26.26a)

[ai, a
†
j ]+ = δij (26.26b)

We may try to consider infinite dimensional representations of this algebra, constructed in
exactly the same way. Consider a vector φ such that

aiφ = 0 (26.27)

for all ai. We may consider
a†i1(· · · )a†ikφ (26.28)

where i1 < · · · < ik. We can act by means of annihilation operators ai on this stuff.
Something new happens, namely:

• First of all, we do not know if this vector φ exists at all. Maybe it doesn’t exist!

• Second we may introduce a†i , ai in many ways. These operators are on completely
equal footing, and we may interchange them! Or parts of them! Why not? If we do
this in finite dimensions, we have a vector annihilated by all a†’s, and we have a vector
annihilated by all a’s. They the operators are on completely equal footing. Physicists
are brave, they apply an infinite number of a†’s. Mathematicians are not so brave.

This Fock space may be definite in the infinite-dimensional case.
We would like to consider analogous generators for an infinite-dimensional spinor

representation. We have some problems. We consider

A =
∑
i,j

αija
†
ia
†
j + β · 1 (26.29)

we consider operators of this form (we can do it for finite dimensions). Then this is
a representation of GL(n), it is sitting inside of SO(n). Well gl(n) to be precise. We
may consider something like this here. We get a nontrivial central extension for infinite-
dimensional representations. We will describe an infinite-dimensional general linear Lie
Algebra gl(∞). We cannot consider them all, but we will restrict our focus. These guys
appear in physics all the time during quantization. We have projective representations as
our tool in quantum theory.
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Lecture 27

We will discuss some stuff that generalizes what we considered. Last time we considered
infinite dimensional Clifford algebras with generators a†k, ak such that

[ai, aj ]+ = [a†i , a
†
j ]+ = 0 (27.1a)

[ai, a
†
j ]+ = δij (27.1b)

We can construct a representation in analogy to the finite dimensional case: take a vector φ
such that

aiφ = 0 (27.2)

for all ai. We consider
a†k1(· · · )a†knφ (27.3)

where k1 < · · · < kn. This gives us a space called the “Fock Space” and the vector φ is
called the “Vacuum Vector”. We may swap

a† ⇐⇒ a (27.4)

we get another Fock space; we may exchange only parts of the operator, and we still get
another Fock space. Maybe these Fock spaces are equivalent, maybe not.

Consider terms of the form αkla
†
kal with Euclidean summation convention5. We consider

[αkla
†
kal, βrsa

†
ras] = αkla

†
kalβrsa

†
ras − βrsa†rasαkla

†
kal (27.5a)

= αklβrsa
†
kala

†
ras − a†rasa

†
kal (27.5b)

Well, we deduce
ala
†
r = −a†ral + δrl. (27.6)

We thus get something of the form

[αkla
†
kal, βrsa

†
ras] ∼ γmna†man + Tr[α, β] · 1, (27.7)

the trace of the commutator is nonzero for infinite dimensional matrices α, β.
What we would like to do is move from formal considerations to reality. When working

with infinite sums, it is not terribly clear. But with representations, we may ask questions
regarding the sum (∑

kl

αkla
†
kal

)
(a†i1 · · · a

†
is
φ) (27.8)

we may questions. If the sum is infinite, then sometimes it is still well-defined. Suppose for
every l, there are finitely many k’s which have nonzero components

αkl 6= 0 (27.9)

(if k, l ∈ Z, we could say αkl if |k − l| < N for some fixed N). We have finite number of
indices; therefore if l is sufficiently large, then we can obtain a vanishing answer. Therefore
only finitely many cases are possible, but the expression is well-defined! So everything is
fine! But such operators appear in such matrices.

In particular with the Virasoro algebra, we have

`k = −zk+1 d

dz
(27.10)

5If two indices are repeated, either upstairs or downstairs, sum over it. So e.g. αklakal =
∑
k,l αklakal.

The term “Euclidean summation convention” is due to Misner, Thorne and Wheeler’s Gravitation Chapter
12.3: “(‘Euclidean’ index convention: repeated space indices to be summed even if both are down; dot
denotes time derivative.)”.
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If we take the basis zn, the derivative shifts the index

d

dz
: zk 7→ kzk−1, (27.11)

multiplication by z shifts the index too:

z : zk 7→ zk+1. (27.12)

We have a nontrivial central extension of some algebra gl(∞) the Lie algebra of good infinite
dimensional matrices (but not all infinite dimensional matrices). We can embed the Witt
algebra into gl∞.

Remark 27.1. The infinite dimensional Clifford algebra appears to be the limit or colimit of
all finite dimensional Clifford algebras; Schwarz says this is not so for the infinite dimensional
case; there appears to be canonical embeddings

Cn ↪→ Cn+1 ↪→ Cn+2 ↪→ · · · (27.13)

which is the limit of this sort of representation. There are some side-effects with this,
especially regarding the central extension — it becomes trivial in this limit!

We would like to describe a very interesting situation when we get an affine algebra,
a situation of the Kac–Moody algebra. Take any Lie Algebra G . Now take all Laurent
series

∑
anz

n where an ∈ G and n ∈ Z, but we restrict ourselves specifically to Laurent
polynomials so this sum is finite. We can obtain a Lie algebra, defining the Lie bracket as

[azm, bzn] = [a, b]zm+n, (27.14)

and by demanding linearity, distributivity, etc. This is not the most interesting one; the
most important thing here is the central extension. One of the ways is by means of matrices
and infinite matrices, then perform the central extension.

We will merely write the answer. (This is related to the answer to one of the problems

on the final!) We will define a new Lie Algebra denoted Ĝ in the following way: take the
central extension of the algebra in the following manner. Generators are of the form azn,
the central extension c. We assume

[azn, c] = 0 (27.15)

We don’t really have a choice! Define the new commutator by

[azm, bzn]new = [a, b]oldz
m+n +m〈a, b〉δm+n,0c

central term with coefficient

(27.16)

This is the answer, we get a central extension this way. Well, do we? Prove it! Check it is a
Lie Algebra, check the Jacobi identity:

[[azm, bzn]new, rz
s]new = [[a, b]oldz

m+n, rzs]new (27.17a)

= [[a, b]old, r]oldz
m+n+s + (m+ n)〈[a, b]old, r〉δm+n+s,0c (27.17b)

By taking cyclic permutations, the first term vanishes identically (we borrow the Jacobi
identity from the old Lie bracket). What about the second term? Well, we use the invariant
inner product, i.e. for a representation ϕ we have

〈y, ϕ(z)〉+ 〈ϕ(y), z〉 = 0; (27.18)

the adjoint representation has

〈[x, y], z〉+ 〈y, [x, z]〉 = 0 (27.19)

So really the cyclic permutations of 〈[a, b], r〉 are equal up to a sign (or more closely examined,
we see it is identical). We can repeat more or less everything from finite-dimensional Lie
algebras.



Lecture 27 68

Remark 27.2. This is useful in physics, if symmetry coincides with Lie algebra, we need
projective representations, thus we need central extensions; the cohomology of Lie algebras
gives us the central extension being unique.
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A Bibliography and Further References
The required text for the course was

• V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representation. Graduate
Texts in Mathematics v. 102, Springer-Verlag (1984).

There was a supplementary text that was recommended informally beforehand by another
professor:

• William Fulton, Joe Harris, Representation Theory: A First Course. Graduate Texts
in Mathematics, Springer-Verlag (1991).

• Brian C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Intro-
duction. Springer (2003).

• Daniel Bump, Lie Groups. Graduate Texts in Mathematics, Springer (2004).

• Anthony W. Knapp, Lie Groups: Beyond an Introduction. Birkhäuser, 2nd edition
(2002).

• Robert Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications. Dover
Publications (2006).

With regards to further studies of infinite-dimensional Lie Algebras, there are a variety
of different texts to read. Kac notes there are roughly 4 different meanings of “infinite-
dimensional Lie Algebras”:

1. The Lie algebras of vector fields and the corresponding groups of diffeomorphisms of a
manifold.

2. Lie groups (resp. Lie algebras) of smooth mappings of a given manifold into a finite-
dimensional Lie group (resp. Lie algebra). So this is a group (Lie algebra) of matrices
over some function algebra but viewed over the base field. (Physicists refer to certain
central extensions of these Lie algebras as current algebras.) The main subject of
study in this case has been certain special families of representations.

3. Classical Lie groups and algebras of operators in a Hilbert or Banach space. There is
apparantely a rather large number of scattered results in this area, which study the
structure of these Lie groups and algebras and their representations. A representation
which plays an important role in quantum field theory is the Segal-Shale-Weil (or
metaplectic) representation of an infinite-dimensional symplectic group.

4. Kac-Moody algebras, which Kac investigates in his book.

The references to investigate this subject are:

1. Minorus Wakimoto, Infinite-Dimensional Lie Algebras. Translations of Mathematical
Monographs, vol 195. American Mathematical Society (2000).

2. Victor Kac, Infinite Dimensional Lie Algebras. Cambrdige University Press (1990).

3. Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups. London
Mathematical society Monographs, New Series vol 16. Oxford University Press (1996).

Wakimoto describes his book as an “hors d’oeuvres” to Kac’s book and the “great feast” of
infinite-dimensional Lie algebras.



Solutions to Exercises 70

B Solutions to Exercises
B.1 Problem Set 1

xEXERCISE 20
Check:

1. that the vector space R3 is a Lie algebra with respect to the cross product of vectors;

2. this Lie algebra is simple (i.e. does not have any non-trivial ideals);

3. all derivations of this Lie algebra are inner derivations.

Answer to 20:
For the matter of R3 being a Lie algebra, we have the following proof:

Proof. We have a vector space R3 over R. We need to show that when we equip it with the
cross product operation, we obtain a Lie algebra. That is, we induce a Lie Bracket

[~v, ~w] := ~v × ~w (B.1)

where ~v, ~w ∈ R3. We need to check that it obeys the properties of the Lie bracket, and that
the property of distributivity holds.

For the properties of the bracket, we see that antisymmetry holds:

[~v, ~w] = ~v × ~w (B.2a)

= −~w × ~v (B.2b)

= −[~w,~v]. (B.2c)

We see that it is linear in the second slot (and by antisymmetry, the first slot too):

[~u,~v + ~w] = ~u× (~v + ~w) (B.3a)

= ~u× ~v + ~u× ~w (B.3b)

= [~u,~v] + [~u, ~w]. (B.3c)

Lastly we see that the Jacobi identity holds. We first observe, by Lagrange’s identity

~u× (~v × ~w) = ~v(~u · ~w)− ~w(~u · ~v) (B.4a)

~v × (~w × ~u) = ~w(~v · ~u)− ~u(~v · ~w) (B.4b)

~w × (~u× ~v) = ~u(~w · ~v)− ~v(~w · ~u) (B.4c)

Then we consider the Jacobi identity by plugging in our results from Eq (B.4):

[~u, [~v, ~w]] + [~v, [~w, ~u]] + [~w, [~u,~v]] = ~u× (~v × ~w) + ~v × (~w × ~u) + ~w × (~u× ~v) (B.5a)

= ~v(~u · ~w)− ~w(~u · ~v) + ~w(~v · ~u)− ~u(~v · ~w)

+ ~u(~w · ~v)− ~v(~w · ~u) (B.5b)

= [~v(~u · ~w)− ~v(~w · ~u)] + [~w(~v · ~u)− ~w(~u · ~v)]

+ [~u(~w · ~v)− ~u(~v · ~w)] (B.5c)

= [0] + [0] + [0] = 0 (B.5d)

which holds. Thus the cross product satisfies the properties of the Lie bracket, implying R3

equipped with the cross product is a Lia algebra.

Answer 1.2: For the matter of this Lie algebra being simple, we have another proof.

Proof. Assume for contradiction there is an ideal I ⊆ R3 which is nontrivial. Then there is
a nontrivial center for the Lie algebra. That is, we have some ~x ∈ I such that

[~x, ~y] = 0 (B.6)
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for all ~y ∈ R. However, this happens if and only if

~x = λ~y for some nonzero λ, or ~x = 0. (B.7)

The second case is trivial, the first case implies I = R3. In either case, R3 does not have a
nontrivial center, so it doesn’t have a nontrivial ideal.

Answer 1.3: Last part of the first exercise, we need to show that all derivations of this
Lie algebra are inner derivations. We thus produce the following proof.

Proof. We find that a derivation α : R3 → R3 would be of the form

α([~u,~v]) = [α(~u), ~v] + [~u, α(~v)]. (B.8)

which occurs whenever α = [~w,−] (for some ~w ∈ R3) by the Jacobi identity. We want to
show that there are no other derivations. We see that α is represented by an antisymmetric
matrix X +XT = 0. But we also recall any matrix B can be written as

B = A+ S (B.9)

where A is antisymmetric, and S is symmetric. Then if B were a derivation we see that

B[~u,~v] = [B~u,~v] + [~u,B~v] (B.10)

but this would have
S[~u,~v] = [S~u,~v] + [~u, S~v] (B.11)

which is not true. This means that a derivation is of the form of an antisymmetric matrix,
which is the same as being of the form α[~w,−].

xEXERCISE 21
Check the Lie algebra in problem 20 is:

1. isomorphic to the Lie algebra so(3) of real antisymmetric 3× 3 matrices; and

2. isomorphic to the Lie algebra su(2) of complex anti-Hermitian traceless 2× 2 matrices.

Answer 2.1: For the first matter of so(3) we have the following proof:

Proof. The linear map ϕ basically maps bijectively

~e1 =

1
0
0

 7→ ϕ(~e1) =

0 0 0
0 0 −1
0 1 0

 (B.12a)

~e2 =

0
1
0

 7→ ϕ(~e2) =

 0 0 1
0 0 0
−1 0 0

 (B.12b)

~e3 =

0
0
1

 7→ ϕ(~e3) =

0 −1 0
1 0 0
0 0 0

 (B.12c)

~x =

x1

x2

x3

 7→ ϕ(~x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (B.12d)

which we will prove is an isomorphism. By direct computation, we find the commutator
[ϕ(~x), ϕ(~y)] is: 0 −x3 x2

x3 0 −x1

−x2 x1 0

 0 −y3 y2

y3 0 −y1

−y2 y1 0

−
 0 −y3 y2

y3 0 −y1

−y2 y1 0

 0 −x3 x2

x3 0 −x1

−x2 x1 0
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=

−x2y2 − x3y3 x2y1 x3y1

x1y2 −x1y1 − x3y3 x3y2

x1y3 x2y3 −x1y1 − x2y2

−
−x2y2 − x3y3 x1y2 x1y3

x2y1 −x1y1 − x3y3 x2y3

x3y1 x3y2 −x1y1 − x2y2


(B.13a)

=

 0 x2y1 − x1y2 x3y1 − x1y3

x1y2 − x2y1 0 x3y2 − x2y3

x1y3 − x3y1 x2y3 − x3y2 0

 = ϕ(~x× ~y) (B.13b)

so it preserves the Lie bracket. We see by inspection

ϕ−1 ([ϕ(~x), ϕ(~y)]) = ~x× ~y (B.14)

the inverse map also preserves the Lie bracket. This implies that this linear mapping is a
Lie algebra isomorphism.

Answer 2.2: The isomorphism with su(2) is contained in the proof:

Proof. We have another mapping ψ which is an isomorphism of vector spaces which behave
on basis vectors and an arbitrary vector by:

~e1 =

1
0
0

 7→ ψ(~e1) = i

[
0 1
1 0

]
(B.15a)

~e2 =

0
1
0

 7→ ψ(~e2) = i

[
0 i
−i 0

]
(B.15b)

~e3 =

0
0
1

 7→ ψ(~e3) = i

[
1 0
0 −1

]
(B.15c)

~x =

x1

x2

x3

 7→ ψ(~x) = i

[
x3 x1 − ix2

x1 + ix2 −x3

]
. (B.15d)

To show that ψ is an isomorphism of Lie algebras, we need to show that the Lie bracket is
preserved. We see that the commutator of basis elements of su(2) are

[ψ(~e3), ψ(~e1)] = −
[
1 0
0 −1

] [
0 1
1 0

]
+

[
0 1
1 0

] [
1 0
0 −1

]
(B.16a)

= −
[

0 1
−1 0

]
+

[
0 −1
1 0

]
(B.16b)

= 2ψ(~e2) (B.16c)

[ψ(~e1), ψ(~e2)] = i

[
0 1
1 0

] [
0 −1
1 0

]
− i
[
0 −1
1 0

] [
0 1
1 0

]
(B.16d)

= i

[
1 0
0 −1

]
− i
[
−1 0
0 1

]
(B.16e)

= 2ψ(~e3) (B.16f)

[ψ(~e2), ψ(~e3)] = i

[
0 −1
1 0

] [
1 0
0 −1

]
− i
[
1 0
0 −1

] [
0 −1
1 0

]
(B.16g)

=

[
0 i
i 0

]
−
[

0 −i
−i 0

]
(B.16h)

= 2ψ(~e1) (B.16i)
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We see that this is isomorphic to the Lie algebra on R3 equipped with the Lie bracket incuced
by

[~u,~v] = ~u× ~v − ~v × ~u (B.17)

the commutator of the cross products.

B.2 Problem Set 2

xEXERCISE 22
Find the Lie algebras for the following matrix groups:

1. The group of real upper triangular matrices.

2. The group of real upper triangular matrices with diagonal entries equal to 1.

3. The group Tk of real n× n matrices obeying aii = 1, aij = 0 if j − i < k and j 6= i.

Answer 22.1: We see that a curve γ : [0, 1] → G in the group of real upper triangular
matrices such that γ(0) = I has components of the form

γ(t) = I + c(t) (B.18)

where c(t) has zero lower triangular components. This implies that the Lie algebra consists
of matrices c′(0) which are upper triangular.

Answer 22.2: We see that curves γ : [0, 1] → G in the group of real upper triangular
matrices with the diagonal components equal to 1 (such that γ(0) = I) is of the form

γ(t) = I +


0 c12(t) · · · c1n(t)
0 0 · · · c2n(t)
...

...
. . .

...
0 0 · · · 0

 (B.19)

The Lie algebra is then consisting of matrices of the form

γ′(0) =


0 c′12(0) · · · c′1n(0)
0 0 · · · c′2n(0)
...

...
. . .

...
0 0 · · · 0

 (B.20)

where c′ij(0) ∈ R for 0 < i < j ≤ n. These are strictly upper triangular matrices with real
entries.

Answer 22.3: We have a matrix Tk with components aij = 0 if both j < i+ k and j 6= i.
For example, consider 3× 3 matrices. We see that

T1 =

1 a12 a13

0 1 a23

0 0 1

 (B.21)

where a12, a13, and a23 are real numbers not necessarily zero (we use the well known fact
that 2 6< 1 + 1, 3 6< 1 + 1, and 3 6< 2 + 1 respectively). Similarly, we see that

T2 =

1 0 b13

0 1 0
0 0 1

 (B.22)

where b13 ∈ R, since here b12 = b23 = 0. Lastly we see that

T3 = I (B.23)
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is the identity element. We see then that the product of two matrices TaTb = T̃min{a,b}
produce another matrix in the group.

We see, however, that this group’s elements of the form T1 form a subgroup which is
isomorphic to the Lie group described in Exercise 22.2. We also see that {Ti+1} ⊆ {Ti} are
subgroups, for all i ∈ N. The Lie algebra for the group described in Answer 22.2 is thus
completely isomorphic to the Lie algebra we are interested in.

xEXERCISE 23

Check the groups of Exercise 22 and corresponding Lie algebras are solvable.

Answer 23: Recall that if g is the Lie Algebra for the group G, then we use the notation
from Knapp’s Lie Groups: Beyond An Introduction (Second Ed.) that

g0 = g, g1 = [g, g], gj+1 = [gj , gj ]. (B.24)

We say that g is “Solvable” if gj = 0 for some j ∈ Z. Here we are using notation that

[a, b] = span{[X,Y ] | X ∈ a, Y ∈ b} (B.25)

wbere a, b are subsets of a Lie algebra g and we take the span over a field F (in our case R).
A group G is solvable iff it is connected and its Lie algebra is solvable. So we need to check
for each group that: 1) it is connected, and 2) its Lie algebra is solvable.

Answer 23.1: We consider g the Lie algebra for the group of n × n upper triangular
matrices with real value entries. Let X,Y ∈ g, write

X = DX + X̃, Y = DY + Ỹ (B.26)

where DX , DY are diagonal matrices, and X̃, Ỹ are off-diagonal matrices. We see that the
commutator of these two elements are then

[X,Y ] = [DX + X̃,DY + Ỹ ] (B.27a)

= [DX , DY ] + [DX , Ỹ ] + [X̃,DY ] + [X̃, Ỹ ] (B.27b)

= 0 + 0 + 0 + [X̃, Ỹ ] (B.27c)

and we can write in block form that

[X̃, Ỹ ] = aij =

{
6= 0 if i+ 1 ≤ j
0 otherwise.

(B.28)

By induction, we see that elements of gm are matrices of the form

aij =

{
6= 0 if i+m ≤ j
0 otherwise

(B.29)

which is zero for all m ≥ n.
We need to prove that the group is connected in order to conclude that it is solvable.

We can see that given any two matrices X, Y ∈ G there is a path γ : [0, 1]→ G connecting
them defined by

γ(t) = tX + (1− t)Y (B.30)

which is always in the group ∀t ∈ [0, 1]. Thus the group is path-connected. This implies
that G is connected.

Answer 23.2: We see that the Lie algebra we are working with is actually isomorphic to
g1 from Answer 2.1, which we saw is solvable. We need to show that the group is connected
to prove that it is solvable. Let X, Y ∈ G be arbitrary group elements. We construct a path
γ : [0, 1]→ G from X to Y defined by

γ(t) = tY + (1− t)X. (B.31)

We see that γ(t) ∈ G for all t ∈ [0, 1], which means that the group is path-connected. This
implies that the group is connected and, moreover, solvable.
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Answer 23.3: We see that the Lie algebra we are working with is, again, isomorphic to
g1 from Answer 2.1, which we saw is solvable. We need to show that the group is connected,
which we will do by proving it is path-connected (a stronger notion!). For Ti, Tj be arbitrary
matrices in our group, we construct a path γ : [0, 1]→ G by

γ(t) = tTj + (1− t)Ti. (B.32)

We see that this path γ(t) ∈ G for all t ∈ [0, 1]. This implies path-connectedness and, more
importantly, solvability of the group.

Definition B.1. A group is “Solvable” if

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {e} (B.33)

is a tower of groups such that Gn−1 ⊇ Gn and Gn−1/Gn is Abelian.

Definition B.2. A Lie Algebra g is “Solvable” iff we can find ideals g0 = g, g1, ..., gn = 0
such that gi ⊇ gi+1 and gi/gi+1 is Abelian.

N.B.: Recall that an ideal h for a Lie algebra g satisfies the property that

[h, g] = span{[X,Y ] | X ∈ h, Y ∈ g} ⊆ h. (B.34)

Proposition B.3. Let g be a Lie algebra, g1 = [g, g], and inductively gi+1 = [gi, gi]. Then
gi/gi+1 is Abelian.

Proof. It is obvious. We mod out all commutation relations to vanish, which is the necessary
and sufficient conditions for a Lie algebra to be Abelian.

Proposition B.4. Let g be a Lie algebra, h ⊆ g be an ideal. Then [h, h] ⊆ h is an ideal of
h.

Proof. It is obvious.

Proposition B.5. Let N ⊆ G be a normal Lie subgroup. Then n ⊆ g is an ideal of the Lie
algebra.

Proof. We see that since N is normal, for any g ∈ G that gNg−1 ⊆ N . Consider a curve
γ : [0, 1]→ N such that γ(0) = I is the identity element.

Theorem B.6. Let G be a Lie group and g its Lie algebra. If g is solvable, then G is
solvable.

Proof. We recall that exp: g→ G recovers the Lie group. We see that if we have a tower of
ideals

g0 ⊇ g1 ⊇ · · · ⊇ gn = {0}, (B.35)

then by exponentiation we get a tower of normal Lie subgroups

G ⊇ G1 ⊇ · · · ⊇ Gn = {exp(0)}. (B.36)

We also see that proposition B.3 gives us a method to construct a tower of ideals to demon-
strate solvability for a Lie algebra. Additionally, if gi/gi+1 is Abelian, by exponentiation
Gi/Gi+1 is Abelian. This is sufficient to stating that if g is solvable, then G is solvable
too.

Remark B.7. The Lie algebra sl(n) (also denoted by the symbol An−1) consists of traceless
n × n complex matrices. The symbol Ei,j denotes a matrix with only one nonzero entry
that is equal to 1 and located in the i-th row and j-th column.
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B.3 Exercises

xEXERCISE 24

1. Check that the matrices Ei,j (for i 6= j) and the matrices hi = Ei,i −Ei+1,i+1 form a basis of
sl(n).

2. Find the structure constants in this basis.

Answer to 24:
1 We need to check that any matrix X ∈ sl(n) can be written as a linear combination of
Ei,j and hi. We see that if we work in the canonical basis of Cn, then we can write out X
with components

X = D + X̃ = δijλi + [x̃ij ] (B.37)

where D is diagonal, X̃ has the diagonal components identically zero. We see then that we
can trivially write out

X̃ =
∑
i,j

x̃ijEi,j . (B.38)

So we need to show that we can write out the diagonal part D in terms of hi.
We see that we can write

D = λ1h1 + (λ1 + λ2)h2 + · · ·+ (

k∑
j=1

λj)hk + · · ·+ (

n∑
j=1

λj)hn (B.39)

which permits us to verify that D is indeed traceless, and a linear combination of the basis
vectors hi.

Answer to 24:
2 We see first of all that

[hi, hj ] = 0 (B.40)

for all i, j = 1, ..., n. It is obvious, since h is diagonal.
We observe that

Ei,jEj,k = Ei,k ⇒ Ei,jEk,l = δj,kEi, l (B.41)

where δj,k is the Kronecker delta, which implies

[Ei,j , Ek,l] = δj,kEi,l − δi,lEj,k. (B.42)

This permits us to observe that

[Ei,j , hk] = [Ei,j , Ek,k − Ek+1,k+1] (B.43a)

= [Ei,j , Ek,k]− [Ei,j , Ek+1,k+1] (B.43b)

= (δj,kEi,k − δi,kEj,k)− (δj,k+1Ei,k+1 − δi,k+1Ej,k+1) (B.43c)

Thus we have the commutation relations for the generators of sl(n), which permits us to
deduce the structure constants. Observe if we omit the commas in the indices, we can write

[Eij , Ekl] = fijkl
abEab (B.44a)

= (δai δ
b
l δjk − δaj δbkδil)Eab (B.44b)

which permits us to deduce some of the structure constants. We also have

[Eij , hk] = fijlm
ab(δlkδ

m
k − δlk+1δ

m
k+1)Eab (B.45)

and
[hi, hj ] = 0. (B.46)

xEXERCISE 25
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1. Check that subalgebra h of all diagonal matrices is a maximal commutative subalgebra.

2. Prove that there exists a basis of sl(n) consisting of eigenvectors for elements of h. (This
means that h is a Cartan subalgebra of sl(n).)

Answer to 25:
1 Let h consist of diagonal matrices in sl(n). We need to show (a) it is Abelian, (b) it is
maximal. We see that

[h, h] = Span{[X,Y ] | X,Y ∈ h} (B.47a)

= Span{0} (B.47b)

= 0. (B.47c)

Thus it is Abelian and moreover a nilpotent Lie algebra.
We see that

Nsl(n)(h) = {X ∈ sl(n) | [X,Y ] ∈ h ∀Y ∈ h} (B.48a)

= {Eij ∈ sl(n) | [Eij , Y ] ∈ h ∀Y ∈ h} ∪ {hk ∈ sl(n) | [hk, Y ] ∈ h ∀Y ∈ h}
(B.48b)

= ∅ ∪ {hk ∈ sl(n) | [hk, Y ] ∈ h ∀Y ∈ h} (B.48c)

= ∅ ∪ h = h. (B.48d)

That is to say that h is self-normalising, so h is a Cartan subalgebra.
Since h is self-normalising, if h′ is another Abelian subalgebra, then by definition for

each x ∈ h′

[x, y] ∈ h (B.49)

for every y ∈ h. This implies that x ∈ h and more importantly h′ ⊆ h.

Answer to 25:
2 We observe that

[aiEi,i, Ej,k] = (aj − ak)Ej,k. (B.50)

It implies that
[aihi, Ej,k] = [ãiEi,i, Ej,k] = (ãj − ãk)Ej,k (B.51)

or that Ej,k is an eigenvector for ad(aihi).

xEXERCISE 26
Check that ei = Ei,i+1 and fi = Ei+1,i form a system of multiplicative generators of sl(n). Prove
relations

[ei, fj ] = δijhi, [hi, hj ] = 0, (B.52a)

[hi, ej ] = aijej , [hi, fj ] = −aijfj , (B.52b)

(ad ei)
−aij+1ej = 0, (ad fi)

−aij+1fj = 0 (B.52c)

for some choice of matrix aij .

We use here the notation ad(x) for the operator transforming y into [x, y].

Answer to 26:
Observe that

Ej,k =

k∏
p=j

ep (B.53)

assuming that k > j and

Ej,k =

j∏
p=k

fp (B.54)
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otherwise. So ei and fj generate the algebra.
With regards to the commutation relations, we see first that

[hi, hj ] = 0 (B.55)

for all i, j since hi is diagonal and thus commutes with other diagonal matrices.
We also see that

eifj = Ei,i+1Ej+1,j (B.56a)

= δi,jEi,i (B.56b)

which implies
[ei, fj ] = δi,jEi,i − δi,jEi+1,i+1 = δi,jhi. (B.57)

It follows then from the last homework problem that

[hi, ej ] = 2δijej − δi,j+1ej . (B.58)

Similarly
[hi, fj ] = −2δijfj + δi,j+1fj . (B.59)

If we write
[ei, ej ] = cij

kek, [fi, fj ] = c̃ij
kfk (B.60)

then we see that if |j − i| > 1 then

ad(ei)(ej) = 0, ad(fi)(fj) = 0. (B.61)

If i = j, then
ad(ej)ej = 0, ad(fj)fj = 0 (B.62)

and for i = j + 1 we have

ad(ej+1)ej = 0, ad(fj+1)fj = 0. (B.63)

This is precisely as desired.

B.4 Exercises

B.4.1 Algebra Dn
The Lie algebra Dn consists of 2n× 2n complex matrices L obeying

(FL)T + FL = 0 (B.64)

where, in block form,

F =

[
0 1
1 0

]
. (B.65)

xEXERCISE 27

Check that Dn is isomorphic to the complexification of the Lie algebra of the orthogonal group

O(2n).

Answer to 27:
We see first that we can diagonalize F . Observe that[

1 1
1 −1

] [
0 1
1 0

] [
1 1
1 −1

]
=

[
1 1
−1 1

] [
1 1
1 −1

]
=

[
2 0
0 −2

]
(B.66)

So we have

F =

(
1√
2

[
1 1
1 −1

])[
1 0
0 −1

](
1√
2

[
1 1
1 −1

])
(B.67)
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We observe that since we are working with complex matrices, we can write[
1 0
0 −1

]
=

[
1 0
0 i

]
I

[
1 0
0 i

]
(B.68)

where I is the 2n× 2n identity matrix. Thus we have a mapping

ϕ(X) =
1

2

[
1 1
1 −1

] [
1 0
0 i

]
X

[
1 0
0 i

] [
1 1
1 −1

]
(B.69)

which maps the condition

ϕ
(
(FX)T + FX

)
= ϕ(X)T + ϕ(X) (B.70)

to the condition for ϕ(X) ∈ Co(2n). We see that this mapping is invertible trivially.

xEXERCISE 28
Check that the matrices

eij :=

[
Eij 0
0 −Eji

]
(B.71)

together with the matrices

fpq :=

[
0 Epq − Eqp
0 0

]
, gpq :=

[
0 0

Epq − Eqp 0

]
(B.72)

form a basis of Dn.

Here i, j = 1, . . . , n, 1 ≤ p < q ≤ n, and Ei,j has only one nonzero entry that is equal to unity

located in the ith row and jth column.

Answer to 28:
We see that, when written in block form, the condition for Dn implies that

F

[
A B
C D

]
=

[
C D
A B

]
(B.73a)[

AT CT

BT DT

]
F =

[
CT AT

DT BT

]
(B.73b)

⇒
[
C D
A B

]
= −

[
CT AT

DT BT

]
(B.73c)

Thus we see that if L ∈ Dn, it can be written in block form as

L =

[
A B
C −AT

]
(B.74)

where A is any n× n matrix, B,C are antisymmetric n× n matrices. We see we can write
this as

L = aijeij + bpqfpq + cpqgpq (B.75)

where we sum over i, j, p, q.

xEXERCISE 29
Check that the subalgebra h of all matrices of the form[

A 0
0 −A

]
(B.76)

(where A is a diagonal matrix) is a maximal commutative subalgebra, and prove that there exists

a basis of Dn consisting of eigenvectors for elements of h acting on Dn by means of adjoint

representation. (This means that h is a Cartan subalgebra of Dn.)
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Answer to 29:
h is Cartan SubalgebraWell, we see that hi = ei,i forms a basis of h. We know from homework 1 that if we include

nonzero off-diagonal components, the algebra is non-Abelian. So every Abelian subalgebra
must be generated by some subset of hi. This means that

h = span{aihi : ai ∈ C} (B.77)

is a Maximal Abelian subalgebra.
EigenbasisWe see that

[hi, ejk] = hiejk − ejkhi (B.78a)

=

[
Ei,i 0
0 −Ei,i

] [
Ejk 0
0 −Ekj

]
−
[
Ejk 0
0 −Ekj

] [
Ei,i 0
0 −Ei,i

]
(B.78b)

=

[
Ei,iEj,k − Ej,kEi,i 0

0 Ei,iEk,j − Ek,jEi,i

]
(B.78c)

= δi,jei,k − δk,iej,i (B.78d)

= (δi,j − δk,i)ej,k. (B.78e)

Similarly

[hi, fpq] =

[
Ei,i 0
0 −Ei,i

] [
0 Epq − Eqp
0 0

]
−
[
0 Epq − Eqp
0 0

] [
Ei,i 0
0 −Ei,i

]
(B.79a)

=

[
0 Ei,iEp,q − Ei,iEq,p
0 0

]
−
[
0 −(Ep,qEi,i − Eq,pEi,i)
0 0

]
(B.79b)

=

[
0 Ei,iEp,q + Ep,qEi,i − Ei,iEq,p − Eq,pEi,i
0 0

]
(B.79c)

= (δi,p + δi,q)fpq. (B.79d)

Lastly

[hi, gpq] =

[
Ei,i 0
0 −Ei,i

] [
0 0

Epq − Eqp 0

]
−
[

0 0
Epq − Eqp 0

] [
Ei,i 0
0 −Ei,i

]
(B.80a)

=

[
0 0

−Ei,iEp,q + Ei,iEq,p 0

]
−
[

0 0
Ep,qEi,i − Eq,pEi,i 0

]
(B.80b)

= −(δi,p + δi,q)gp,q. (B.80c)

Thus ejk, fpq, and gpq form a basis for the Lie algebra, and are weight vectors.

xEXERCISE 30
Check that ei = ei,i+1 for i = 1, ..., n − 1 and en = fn−1,n; fi = ei+1,i for i = 1, ..., n − 1 and
fn = gn−1,n form a system of multiplicative generators of Dn. Prove the relations

[ei, fj ] = δijhi (B.81a)

[hi, hj ] = 0 (B.81b)

[hi, ej ] = aijej (B.81c)

[hi, fj ] = −aijfj (B.81d)

(adei)
1−aij ej = 0 when i 6= j (B.81e)

(adfi)
1−aijfj = 0 when i 6= j (B.81f)

Answer to 30:
It follows immediately from the calculations performed in the answer to 3.
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B.4.2 Algebra Cn
Consider the Lie algebra Cn consisting of 2n× 2n complex matrices obeying

(FL)T + FL = 0 (B.82)

where

F =

[
0 1
−1 0

]
. (B.83)

xEXERCISE 31

Check that Cn is isomorphic to the complexification of the Lie algebra of the compact group

Sp(2n) ∩ U(2n) where Sp(2n) stands for the group of linear transformations of C2n preserving

non-degerate anti-symmetric bilinear form and U(2n) denotes unitary group.

Answer to 31:
We see first of all that we may diagonalize F when we write it as

1

2

[
−i 1
i 1

] [
i 0
0 i

] [
−i i
1 1

]
= F. (B.84)

We see that we can construct a morphism

ϕ(X) =
1

2

[
−i i
1 1

]
X

[
−i 1
i 1

]
(B.85)

which is invertible, whose domain is Cn and whose codomain is precisely the complexified
Lie algebra for U(2n) ∩ Sp(2n).

xEXERCISE 32
Check that the matrices

eij =

[
Eij 0
0 −Eji

]
(B.86a)

fpq =

[
0 Epq + Eqp
0 0

]
(B.86b)

gpq =

[
0 0

Epq + Eqp 0

]
(B.86c)

form a basis of Cn, where i, j = 1, ..., n and 1 ≤ p ≤ q ≤ n.

Answer to 32:
If we write an element of our algebra in block form as

L =

[
A B
C D

]
(B.87)

then by our conditions, we deduce

FL =

[
C D
−A −B

]
(B.88a)

LTF =

[
CT −AT
DT −BT

]
(B.88b)

which implies that B and C are symmetric, and −AT = D. So in other words we can write

L =

[
A 1

2 (B +BT )
1
2 (C + CT ) −AT

]
. (B.89)

However, this permits us to write

L =

[
A 0
0 −AT

]
+

[
0 1

2 (B +BT )
0 0

]
+

[
0 0

1
2 (C + CT ) 0

]
(B.90a)

= aijeij + bpqfpq + cpqgpq (B.90b)

which is precisely what we desired to demonstrate.
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xEXERCISE 33
Check that the subalgebra h of all matrices of the form[

A 0
0 −A

]
(B.91)

where A is a diagonal matrix, is a maximal commutative subalgebra. Prove there exists a basis of

Cn consisting of eigenvectors for elements of h acting on Cn by means of adjoint representation.

Answer to 33:
The reasoning for the maximal commutative subalgebra is the same as for the Dn case.

xEXERCISE 34
Check that ei = ei,i+1 (i = 1, ..., n− 1) and en = fn,n; fi = ei+1,i (i = 1, ..., n− 1) and fn = gn,n
form a system of generators of Cn. Prove

[ei, fj ] = δijhi, (B.92a)

[hi, hj ] = 0 (B.92b)

[hi, ej ] = aijej , (B.92c)

[hi, fj ] = −aijfj , (B.92d)

(adei)
1−aij ej = 0, i 6= j (B.92e)

(adfi)
1−aijfj = 0, i 6= j (B.92f)

Answer to 34:
We see that it follows from the calculations performed in the previous answer to exercise 32.

B.4.3 Algebra Bn
The algebra Bn consists of (2n+ 1)× (2n+ 1) complex matrices obeying

LTF + FL = 0 (B.93)

where

F =

1 0 0
0 0 1
0 1 0

 (B.94)

is written in block form.

xEXERCISE 35

Show that Bn is isomorphic to the complexified Lie algebra of O(2n+ 1).

Answer to 35:
We construct an isomorphism by diagonalizing F :

F =

1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2

1 0 0
0 −1 0
0 0 1

1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2

 (B.95)

which allows us to write

ϕ(X) =

1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2

1 0 0
0 i 0
0 0 1

X
1 0 0

0 i 0
0 0 1

1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2

 (B.96)

which clearly is an isomorphism as desired.
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xEXERCISE 36
Check that the subalgebra h of all matrices of the form0 0 0

0 A 0
0 0 −A

 (B.97)

(where A is a diagonal matrix) is a maximal Abelian subalgebra, and prove there is a basis of Bn
consisting of eigenvectors for elements of h acting on Bn by the adjoint representation.

Answer to 36:
The proof for h being a Cartan subalgebra is ALMOST the same as for the Dn case. The
basic reasoning is the same, we have our beloved isomorphism

ϕ : Bn → CLie
(
O(2n+ 1)

)
(B.98)

which is defined by
ϕ(X) = PXPT (B.99)

where P is the orthogonal matrix

P =

1 0 0
0 I√

2
−I√

2

0 I√
2

I√
2

 (B.100)

where I here is the n× n identity matrix. The inverse to this morphism would be

ϕ−1(Y ) = PTY P (B.101)

and we know the Cartan subalgebra is spanned by hi = Ei,i+1 −Ei+1,i, by applying ϕ−1 to
it we deduce that

ϕ−1(hi) = E1+i,1+i − E1+n+i,1+n+i (B.102)

up to some change of coordinates by multiplication by i.

xEXERCISE 37
Find a system ei, fj of multiplicative generators of Bn obeying

[ei, fj ] = δijhi (B.103a)

[hi, hj ] = 0 (B.103b)

[hi, ej ] = aijej (B.103c)

[hi, fj ] = −aijfj (B.103d)

(adei)
1−aij ej = 0, i 6= j (B.103e)

(adfi)
1−aijfj = 0, i 6= j (B.103f)

for “some” matrix aij .

Answer to 37:
We know that CLie

(
O(2n+ 1)

) ∼= Bn, and that the basis for CLie
(
O(2n+ 1)

)
consists of

n(2n+ 1) antisymmetric matrices. We observe

ϕ−1

0 −~uT −~vT
~u 0 0
~v 0 0

 =
1√
2

 0 −i(~v − ~u)T −(~v + ~u)T

i(~v − ~u) 0 0
(~v + ~u) 0 0

 (B.104)

which permits us to deduce how these particular basis vectors transform. The others are
remarkably similar to Dn, which calculations have been performed or given.
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If we let

H =

0 0 0
0 D 0
0 0 −D

 ∈ h (B.105)

(for some diagonal n× n matrix D) and

L =

0 −~uT −~vT
~u A 1

2 (B −BT )
~v 1

2 (C − CT ) −AT

 ∈ Bn (B.106)

(for arbitrary n× n matrices A, B, C, and n-vectors ~u, ~v) be arbitrary, then we find

[H,L] =

 0 −~uTD ~vTD
D~u [D,A] 1

2{B −B
T , D}

−D~v − 1
2{C − C

T , D} [D,AT ]

 (B.107)

where {a, b} = ab + ba is the anticommutator. We see that in addition to the basis root
vectors given by Dn, we have the additional root vectors

ẽi =

 0 −~uTi 0
~ui 0 0
0 0 0

 (B.108)

and

f̃i =

 0 0 −~uTi
0 0 0
~ui 0 0

 (B.109)

where {~ui} is the canonical basis for Rn. We see that, if

hi =

0 0 0
0 Ei,i 0
0 0 −Ei,i

 ∈ h (B.110)

then
[hi, ẽj ] = δij ẽj (B.111)

and
[hi, f̃j ] = −δij f̃j (B.112)

which tell us the roots corresponding to ẽj and f̃j .

xEXERCISE 38

Describe the roots and root vectors of An, Bn, Cn, Dn.

Answer to 38:
We find the roots and root vectors described by the previous exercises for algebras Dn, Cn,
and Bn respectively. We also examined the root system for An in a previous homework.

We can describe the roots by examining the Cartan matrices of these algebras. These
are obtained by the commutation relations, the coefficients aij are the components of the
Cartan matrix. Additionally we have by definition aij ≤ 0 for non-diagonal components.
With these conditions in mind, we can write the Cartan matrices merely from the results we
have already computed. For An we have

aij =


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

 . (B.113)
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For Bn we have

aij =



2 −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
0 0 −1 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −2
0 0 0 0 · · · −1 2


. (B.114)

For Cn

aij =



2 −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
0 0 −1 2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −1
0 0 0 0 · · · −2 2


. (B.115)

For Dn

aij =



2 −1 · · · 0 0 0 0
−1 2 · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · 2 −1 0 0
0 0 · · · −1 2 −1 −1
0 0 · · · 0 −1 2 0
0 0 · · · 0 −1 0 2


. (B.116)

B.5 Additional Exercises

xEXERCISE 39

Let V be the fundamental representation of sl(n). Let V ∗ be the representation dual to V . Find

the decomposition of V ⊗ V and V ⊗ V ∗ into the direct sum of irreducible representations.

Answer to 39:
Well, we first see that if

ρ : sl(n)→ gl(V ) (B.117)

is our representation morphism and

ρ∗ : sl(n)→ gl(V ∗) (B.118)

is the dual representation, then we have

ρ⊗ ρ : sl(n)→ gl(V )⊗ gl(V ) (B.119)

and
ρ⊗ ρ∗ : sl(n)→ gl(V )⊗ gl(V ∗). (B.120)

We know that we can decompose

V ⊗ V ∼= Sym2(V )⊕ Λ2(V ) (B.121)

which intuitively corresponds to writing an arbitrary matrix as the sum of an antisymmetric
matrix and a symmetric matrix. We would like to show that this decomposition corresponds
to a direct sum of irreps.

We first of all see that if

V = span{u1, u2, ..., un} (B.122)
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where u1 is the highest weight vector, e1u2 = u1, and so on, then we can write

V ⊗ V = Span{ui ⊗ uj | i, j = 1, ..., n}. (B.123)

However we note that the decomposition in eq (B.121) amounts to

V⊗V = Span

{
1

2
(ui ⊗ uj + uj ⊗ ui) | i, j = 1, ..., n

}
=Sym2(V )

⊕Span

{
1

2
(ui ⊗ uj − uj ⊗ ui) | i 6= j, i, j = 1, ..., n

}
=Λ2(V )

.

To show that the representation of the group acting on V ⊗ V is the direct sum of two
irreducible representations, we will show that the representation has exactly one highest
weight vector in Sym2(V ) and exactly one highest weight vector in Λ2(V ). We will also show
that the group acts on all basis vectors, which is sufficient to demand that the representations
is irreducible (thus implying ρ⊗ ρ is the direct sum of two irreps).

CLAIM 1: There is exactly one highest weight vector in Sym2(V ).

Proof. We see that
ρ⊗ ρ(hi)(ui ⊗ uj) = (λi + λj)(ui ⊗ uj) (B.124)

and thus
ρ⊗ ρ(hi)(u1 ⊗ u1) = 2λ1(u1 ⊗ u1). (B.125)

We see that
ρ⊗ ρ(ei)(u1 ⊗ u1) = 0 (B.126)

for all i, implying that u1 ⊗ u1 is a highest weight vector. There are no others since

ρ⊗ ρ(ei)(uj ⊗ uk) = δi,juj−1 ⊗ uk + δi,kuj ⊗ uk−1 (B.127)

up to some constant, which implies there are no other possibilities for a highest weight
vector.

CLAIM 2: There is exactly one highest weight vector in Λ2(V ).

Proof. We see that similar reasoning holds. More explicitly

ρ⊗ρ(ei)(uj⊗uk−uk⊗uj) = (δi,juj−1 ⊗ uk + δi,kuj ⊗ uk−1)−(δi,juk ⊗ uj−1 + δi,kuk−1 ⊗ uj)
(B.128)

but only
ρ⊗ ρ(ei)(u1 ⊗ u2 − u2 ⊗ u1) = 0 (B.129)

for all i identically. This is precisely uniqueness of a vector that vanishes when acted upon
by ei for any i, which is the condition for the highest weight vector to be unique.

Lemma B.8. If ρ : G → GL(V ) is a representation of a Lie group, its induced dual
representation for the Lie Algebra is

ρ∗(x) := −ρ(x)T . (B.130)

Proof. We observe that, from Lecture 15, the dual representation of a Lie group is defined
to be

ρ∗(g) = ρ(g−1)T (B.131)

for any g ∈ G. If we take g = 1 + εX for an “infinitesimal” ε, then we can write

(1 + εX)−1 = 1− εX (B.132)
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and
ρ∗(1 + εX) = ρ(1− εX)T . (B.133)

By Taylor expanding about 1, we deduce

ρ∗(1 + εX) = ρ(1)T + ε
[
−ρ(X)T

]
(B.134)

which permits us to induce a “dual” representation for the Lie Algebra defined by

ρ∗(X) = −ρ(X)T (B.135)

precisely as desired.

Since we are working with the fundamental representation ρ of sl(n) we have

ρ(ei)
T = ρ(fi). (B.136)

Additionally, the Cartan subalgebra elements are such that

ρ(hi)
T = ρ(hi) (B.137)

since they are represented by diagonal matrices. So we have

(ρ⊗ ρ∗)(ei)(uj ⊗ uk) = (ρ(ei)uj)⊗ uk − uj ⊗ (ρ(fi)u
k) (B.138)

where superscript indices here indicate that it is a covector, a linear functional, an element
of the dual vector space. We observe

ρ(fi)ui = ui+1, and ρ(ei)ui = ui−1 (B.139)

since we noted in Lecture 16 the weight vectors for the fundamental representation is nothing
more than the canonical basis. This permits us to deduce

(ρ⊗ ρ∗)(ei)(u1 ⊗ un) = 0 (B.140)

for all i, which means u1 ⊗ un is a weight vector for this representation. We also see that

(ρ⊗ ρ∗)(ei)(uj ⊗ uj) = 0 (B.141)

identically, since
(ρ⊗ ρ∗)(ei)(uj ⊗ uk) = (λj − λk)(uj ⊗ uk). (B.142)

Setting j = k we find the right hand side vanishes identically.

xEXERCISE 40

Prove the fundamental represenation of so(n) is equivalent to dual representation. Find the decom-

position of the tensor square of this representation into direct sum of irreducible representations.

CLAIM 1: The fundamental representation of so(n) is equivalent to its dual representation.

Proof. Well, we know the dual representation for ρ : G→ GL(V ) is

ρ∗(g) = ρ(g−1)T . (B.143)

By making g = 1 + εX where ε is “infinitesimal,” we get by Taylor expanding about 1

ρ(1− εX)T = ρ(1) + ε
(
−ρ(X)T

)
(B.144)

which permits us to deduce for a Lie algebra, the dual representation for an element X is

ρ∗(X) = −ρ(X)T . (B.145)
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We know for the fundamental representation of so(n) we are working with n×n antisymmetric
matrices. However, this means that for the fundamental representation ρ of so(n)

ρ(X)T = −ρ(X) (B.146)

for all X ∈ so(n), which implies

ρ(X) = −ρ(X)T = ρ∗(X) (B.147)

precisely as desired.

Proposition B.9. The Cartan subalgebra is

h = span{
n∑
j=1

xj(E2j,2j−1 − E2j−1,2j)} (B.148)

and the weight vectors are, for the fundamental representation

~uj = ~e2j + i~e2j−1 (B.149)

for j = 1, ..., n.

Proof. It follows from the definition of the maximal torus that eq (B.148) holds. The
eigenvalues for the 2× 2 matrix [

0 −1
1 0

]
(B.150)

is ±1 with eigenvectors (i, 1) and (−i, 1) for −i, i respectively. Thus we deduce the weight
vectors to be as desired.

Proposition B.10. We deduce that

[hj , λ
k(Ek,2j −E2j,k) +µ`(E`,2j−1−E2j−1,`)] = −λk(Ek,2j−1−E2j−1,k) +µ`(E`,2j −E2j,`).

(B.151)

Proof. We find this by direct calculation.

We can further compute how these terms act on the weight vectors. We observe

λk(Ek,2j − E2j,k)~uj = λk~ek − iλkδk,2j−1~e2j (B.152a)

µ`(E`,2j−1 − E2j−1,`)~uj = iµ`~e` − µ`δ`,2j~e`. (B.152b)

Thus we observe that when ` = 2j + 1 and k = 2j + 2, we get

λk(Ek,2j − E2j,k)~uj + µ`(E`,2j−1 − E2j−1,`)~uj = ~uj+1. (B.153)

We also observe that when ` = 2j − 3 and k = 2j − 2, we get

λk(Ek,2j − E2j,k)~uj + µ`(E`,2j−1 − E2j−1,`)~uj = ~uj−1. (B.154)

Thus we have found our raising and lowering operators ej and fj respectively.
But notice since the representation is “self-dual”, we have the decomposition of

V ⊗ V = Sym2(V )⊕ Λ2(V ). (B.155)

Thus we have two irreps, one acting on Sym2(V ) and the other acting on Λ2(V ). We can
observe the following thing: a symmetric matrix X is such that

Tr(PXPT ) = Tr(X) (B.156)
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for P ∈ O(n). So, we can consider traceless symmetric matrices X which forms an invariant
subspace of Sym2(V ). Additionally, matrices of the form cI where c ∈ R is some constant,
also obey

P (cI)PT = c(PIPT ) = c(PPT ) = cI (B.157)

for P ∈ O(n). Note these are group elements and the group representation acting on V ⊗ V ,
which permit us to find invariant subspaces and thus subrepresentations for the group which
correspond to subrepresentations of the Lie algebra.

So the invariant subspaces are three:

1. Λ2V the antisymmetric part;

2. Span{I} the scalar matrices; and

3. {X ∈ Sym2V |Tr(X) = 0} traceless matrices.

Each of these are irreducible, since there is precisely one highest weight vector for each of
them.

xEXERCISE 41
(Schur’s lemma) Let us consider a complex irreducible representation ϕ of Lie algebra G . Let us
assume that the operator A in the representation space commutes with all operators of the form
ϕ(x) where x ∈ G . Prove that A = λ · 1 where λ ∈ C and 1 stands for the identity operator.

Hint: Consider Ker(A− µ · 1).

Answer to 41:
We will first make a small lemma.

Lemma B.11. Let ϕ : G → V be an irreducible representation of the Lie algebra G , and
L : V → V be a linear mapping. Then either L is an isomorphism, or it is zero.

Proof. Consider Ker(L). It would be an invariant subspace of V , but since ϕ is irreducible
this subspace is either V or 0. For nonzero L, we have Ker(L) = 0. This implies that L is
injective. But since we have an injective endomorphism, thus it is surjective and moreover
bijective. We have L be an isomorphism or, alternatively, 0.

Consider A. It has at least 1 nonzero eigenvalue λ, or it is the zero mapping necessarily
(in which case, A = 0 · I). We see that A− λ · 1 is not an isomorphism, by our lemma since
its kernel is all of V it follows that A = λ · 1 for some λ ∈ C.

xEXERCISE 42
Let us consider a Lie algebra G with basis e1, ..., en and structure constants ckij :

[ei, ej ] = ckijek. (B.158)

We define universal enveloping algebra U(G ) as a unital associative algebra with generators ei and
relations

eiej − ejei = ckijek. (B.159)

Let us assume that there exists an invariant inner product on G and that the basis e1, ..., en is
orthonormal with respect to this product. Prove that that the element

ω =
∑
i

eiei (B.160)

(Casimir element) belongs to the center of enveloping algebra.

Hint. It is sufficient to check that Casimir element commutes with all generators. Write

the condition for ekω = ωek in terms of structure constants and check that the same condition

guarantees invariance of inner product.
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Answer to 42:
Let B be a nondegenerate symmetric invariant bilinear form on G . Let x1, ..., xn be the
basis for G , x1, ..., xn be the dual basis so

B(xi, x
j) = δi

j . (B.161)

Let z ∈ G , we have

[z, xj ] =
∑
i

aijxi = aijxi (B.162)

and
[z, xj ] =

∑
i

bi
jxi = bi

jxi (B.163)

where ai
j and bi

j are “some constants.” Since B is invariant we have

0 = B([z, xi], x
j) +B(xi, [z, x

j ]) = ai
j + bi

j . (B.164)

We see

z(xix
i) = [z, xi]x

i + xizx
i (B.165a)

=
∑
j

ai
jxjx

i + xizx
i (B.165b)

and
(xix

i)z = (xi[x
i, z]) + xizx

i = −
∑
j

bi
jxix

j + xizx
i (B.166)

Thus we find
[z, xix

i] =
∑
j

ai
jxjx

i + bijxix
j =

∑
j

(aj
i + bij)xix

j (B.167)

but due to the invariance of B, we see that the parenthetic term must be zero (we sum over
dummy indices, which we may rewrite as we like). This implies

[z, xix
i] = 0 (B.168)

for any z ∈ G .

xEXERCISE 43

A representation ϕ : G → gl(n) can be extended to a homomorphism of universal enveloping algebra

to the algebra of n × n matrices. If the representation is irreducible the image of the Casimir

element has the form λ · 1. Show that this follows from Schur’s lemma.

Answer to 43:
We have that the Casimir element be denoted by ω. In the universal enveloping algebra, it
is an n× n matrix. It has at least one nonzero eigenvalue λ ∈ C or it is the zero matrix. By
Lemma B.11 we have for ω − λ · 1 its kernel is either 0 or all of Cn. If

Ker(ω − λ · 1) = Cn (B.169)

then
ω = λ · 1 (B.170)

by Schur’s lemma. Otherwise it is the zero matrix.

xEXERCISE 44

Calculate the image of Casimir element for an irreducible representation of the Lie algebra sl(2).
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Answer to 44:

Let
ρ : sl(2)→ gl(V ) (B.171)

be an irrep. We have the dual basis for e, f , h in sl(2) be 2f , 2e and h respectively. By our
previous calculations, it follows that

ω = H2 + 2EF + 2FE (B.172)

where F = ρ(f), E = ρ(e), H = ρ(h).
Observe if ~v is the highest weight vector for the irrep in eq (B.171), and λ is the

corresponding highest weight, we have

ρ(h2)~v = ρ(h)2~v (B.173a)

= λ(h)2~v. (B.173b)

Similarly, we see

ρ(ef + fe)~v = (ρ(e)ρ(f) + ρ(f)ρ(e))~v (B.174a)

= ρ(e)ρ(f)~v + ρ(f) (ρ(e)~v) (B.174b)

= ρ(e)ρ(f)~v + 0 (B.174c)

= ρ(e)ρ(f)~v − 0 (B.174d)

= ρ(e)ρ(f)~v − ρ(f) (ρ(e)~v) (B.174e)

= (ρ(e)ρ(f)− ρ(f)ρ(e))~v (B.174f)

= [ρ(e), ρ(f)]~v (B.174g)

= ρ(h)~v. (B.174h)

Thus the Casimir acting on the highest weight vector is

ω~v = (ρ(h)2 + ρ(h))~v = λ(h) (1 + λ(h))~v. (B.175)
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