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Abstract

Notes on homotopy theory, the first part of a trilogy on algebraic topology. Any
typos, errors, mistakes, gaffes, etc., are entirely my folly.
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Lecture 1 3

Part I

Homotopy Theory

Lecture 1.

The goals today are to explain: what is a topology, and why is it useful to know
topology?

What is topology? The first notion is topological equivalence, or equivalence of two
spaces, i.e., a homeomorphism. If we have X, Y be topological spaces, then a topological
equivalence is a map

f : X → Y (1.1)

that is a one-to-one correspondence, f and f−1 are both continuous. But what kind of
spaces are these? The most general situation is when X is a topological space, where we
have a notion of an open set.

One of the main questions of topology is: given two spaces, are they equivalent? If
we can construct a homeomorphism, we got it. What about if they’re nonequivalent? We
need to use properties called “Topological Invariants”. Topological Invariant =

Property Invariant under
Homeomorphisms

If two spaces are topologically
equivalent, then the topological invariants of the two spaces are the same.

The basic topological invariant for a space is connectedness. We will use the notion
of pathwise connected. A space is pathwise connected if and only if any two points are
connected by a path. What is a path? Well, it is a parametrized curve

γ : [0, 1]→ X (1.2)

such that γ(0) = x and γ(1) = y, and γ is continuous.
We can consider the connected component of X. We can consider x ∼ y iff there

is a path connecting the points. We see that the letter “A” is connected whereas “i” is
disconnected (it has two components), so they are not topologically equivalent.

There is a simple idea regarding ho to construct a topological invariant given some
topological invariant. We consider a functor F which is such that

X ∼ Y =⇒ F (X) ∼ F (Y ) (1.3)

We can consider, for example, the construction

F (−) = Hom(A,−) (1.4)

for some fixed topological space A. We may construct topological invariants this way. For
example the number of connected components of Hom(A,X) gives an invariant of X.

We may consider topological spaces with a marked point (X,x0) where x0 ∈ X. We
may consider

f : (X,x0)→ (Y, y0) (1.5)

such that f(x0) = y0 preserves the marked point. The most interesting object of this kind is
obtained in the following way: take a sphere with a marked point, take maps of this sphere
to some other pointed space

Hom ((Sn, s0), (X,x0)) (1.6)

which is a topological space with marked point (X,x0). We consider the components of
this space, this set has a group structure which we will call πn(X) called the “Homotopy
Group”. For n = 1 we get the fundamental group.

Some other invariants we will consider later are the Euler characteristic. We may
decompose X into the disjoint union of open balls

X =
⊔

(open balls) (1.7)
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For example the sphere is equivalent to a point and the remainder is homologically equivalent
to an open disc. So the Euler characteristic is then

χ(X) =
∑

(−1)nαn (1.8)

where αn is the number of open n-balls. So

χ(X t Y ) = χ(X) + χ(Y ) (1.9)

This sum should not depend on how we decompose the space. To give a proper definition of
the Euler characteristic, we need to use homology.

Topology may be applied to more-or-less everywhere and everything. That doesn’t
mean it answers every question. But we should ask ourselves “What is topology saying
about this?”

Historically the first application was to study integrals. For example, Stoke’s formula,
Green’s formula, etc., are of the form ∫

∂S

ω =

∫
S

dω, (1.10)

so the notion of an integral is closely related to the notion of the boundary of some surface.
The homology is closed surfaces mod boundaries, meh we are sloppy here.
At any rate, integers are relevant to topology, viz. in C. Another thing we’d like to

mention is the application of topology to the study of ~f(~x) = ~0. The first question is how
many solutions do we have? Topology cannot say the number of solutions, but it can tell us
the algebraic number of solutions. For example, when considering y = f(x) where

lim
x→−∞

f(x) < 0 (1.11a)

and
lim
x→∞

f(x) > 0 (1.11b)

then there are an odd number of points x1, . . . , x2n+1 such that

f(xi) = 0 (1.12)

This is topological, and looks like:

etc.

The last thing to mention is the calculation of the index of A, a Fredholm operator.
We consider Ker(A) and assume dim(Ker(A)) is finite. We can consider

A : E → E (1.13)

then
Coker(A) = Im(A)/Ker(A) (1.14)

and dim(Coker(A)) is finite. The difference between these finite numbers is precisely the
“Index” of the operator.

Topology has very important applications in physics. Namely, one of the ways is when
we work with fields. We can consider the space of all fields (possibly with some restrictions,
e.g. with finite energy). It is possibly disconnected. Foe example, in classical mechanics

V (x) = x4 (1.15)
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the space of solutions is disconnected. But to show this, we need the homotopic group of
the space. There are other applications of topology in physics, e.g., TQFT.

There are other topological applications, e.g., in the calculus of variation we may
compute the number of critical points topologically.

Lecture 2.

We will follow Hatcher’s book, and Schwarz’s Topology for Physicists.
The first thing to discuss is topological spaces. We have a set E and a notion of an

open set of E. We have a collection of open subsets of E, {U} where⋃
U = E (2.1a)

and ⋂
finite

U is open (2.1b)

It is not enough to say ⋃
(open) = (open) (2.2a)

and ⋂
finite

(open) = (open) (2.2b)

We have closed sets be the complement of open sets. There is a requirement that E is both
open and closed, which then implies that ∅ is both open and closed.

We can define a continuous function f : E → E′ such that the preimage of open sets is
open, i.e.,

f−1(open) = open. (2.3)

Box 1. Functorial view of Topology, Continuous Functions

This may seem odd at first why continuous functions obey this pre-image condition. There
are a variety of explanations out there, but I prefer this explanation. Consider the category
Set. Let

Hom(−,2) : Setop → Set (2.4)

be the contravariant power set functor. So in other words, we have

Hom(X,2) =

 set of indicator
functions for subsets

of the set X

 (2.5)

We construct a topology by picking a subset of this collection of subsets Hom(X,2) which
obey the axioms for a topology. That is, we have T ⊆ Hom(X,2) be a topology of X. That is
to say, T consists of the indicator functions for open subsets of X. It is a structure-type. A
topological space is then (X,T ).

But note that we functor, so we have the immediate question:

Question. How does Hom(X
f−−→ Y,2) behave?

If we can answer this question, then we will have some idea of what a “topological-space
morphism” would be like. Why? Because we just restrict focus to the functions preserving the
“topological structure” T ⊆ Hom(X,2).

We should recall from our knowledge of category theory that the functor Hom(−, B)
behaves on morphisms in the following manner: Hom(−, B) maps each morphism h : X → Y to
the function Hom(h,B) : Hom(Y,B)→ Hom(X,B) given by g 7→ g◦h for each g in Hom(Y,B).
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What does this mean for our situation? Well, for each f : X → Y it is mapped to the
function

Hom(f,2) : Hom(Y,2)→ Hom(X,2) (2.6)

given by f 7→ h ◦ f where h ∈ Hom(Y,2). So h is really an indicator function of an open subset
of Y . This is precisely the same condition as saying the preimage f−1(open) is open. For a
brief introduction to topology using this approach, see Nelson [7].

Usually we use the Hausdorff condition that two distinct points are contained in two
disjoint neighborhoods.

There is a topological property of “Compactness” where every open covering has a
finite subcovering.

There is one more thing that is relevant. What can we do with equivalence relations on
topological spaces? We can consider equivalence classes E/ ∼. There is a natural map

π : E → E/ ∼ (2.7)

What happens if E is a topological space, then we would like to have E/ ∼ be a topological
space and the map π to be continuous, i.e., the preimage π−1(open) is open. We are saying
U ⊂ E/ ∼ is open iff the preimage π−1(U) is open in E. If the preimage of an open set is
open, then the preimage of a closed set is closed. We see for a singleton a ∈ E/ ∼ then the
preimage π−1(a) is an equivalence class. We have the singletons be closed, so we require
these equivalence classes be closed to avoid pathology.

List of topological spacesNow why are we so interested in this construction? Because we want to have a
construction of interesting topological spaces. We have some simple interesting topological
spaces. What are they? First of all, R3 the space that surrounds us. RnMore generally Rn.
Another interesting space is a ball

D
n

= {~x ∈ Rn | ‖~x‖ ≤ 1} (2.8)

Closed ball D̄nwhich is closed of radius 1. The radius doesn’t change anything, balls of different radius are
topologically equivalent. For example x 7→ λx for λ > 0 is the topological equivalence. We
won’t repeat the definition of “topological equivalence” the curious reader may look it up.
Another interesting space is the open ball Open ball Dn

Dn = {~x ∈ Rn | ‖~x‖ < 1} (2.9)

We use the notation D
n

to stress it is the closure of Dn. It’s an interesting space, perhaps
it is equivalent to D

n
? No! Why? Well, we see that Dn is not compact but D

n
is compact,

so they cannot be topologically equivalent.
But is Rn topologically equivalent to Dn? Yes,

we can see this for n = 1, we use the stereographic
projection which gives us a one-to-one correspondence
between S1 − {0} and R1. We can take n = 2 and
nothing conceptually changes. The same is true for Sn − {0} ∼= Rn. But we may say that
Sn − {0} ∼= Dn.

We would like to stress that the n-dimensional sphere is not a sphere in n-dimensional
space. No, it is instead living in Rn+1. In Rn, the sphere is characterized by the points
~x ∈ Rn satisfying

‖~x‖ = 1 (2.10)

which is an (n− 1)-sphere. We have

D
n

= Sn−1 ∪Dn (2.11)
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where Dn are the interior points and Sn−1 is the boundary.
Now what we would like to say is that, more or less, all interesting spaces may be

constructed from the simple spaces Dn, D
n
. We define a very general construction, namely

given a topological space X, and a topological space Y , a closed subset A ⊂ Y , we’d like to
paste together X and Y along A. What does this mean? We take any continuous map

f : A→ X (2.12)

take the disjoint union X t Y , and then in this disjoint union introduce an equivalence
relation that any a ∈ A ⊂ Y ∼ f(a) ∈ X and no other equivalences!

We require a ∈ A ⊂ Y ∼ f(a) ∈ X is the only nontrivial equivalence. Lets
consider some examples. The Mobius band can be defined in this way: take a
rectangle (which is topologically equivalent to D2) and we consider the equivalence
relation that the two arrows are pasted together.

We see that a rectangle is equivalent to a disc
since both are convex and stretch the boundary to
be a rectangle which permits us to formally write this
equivalence but that won’t be necessary. We can stretch
according to the gray lines doodled to the right.

∼=
So more examples. We take the same rectangle, and paste together

points at the same height. This topologically is equivalent to a cylinder.
This is obvious, as we see in the doodle to the left.

But if we take our cylinder, and glue the two ends to each
other without any twisting, what do we get? Well, we have a
torus. This is doodled on the right hand side, very carefully, with
colors to show where we glued the rectangle together. The red
line indicates where we glued the rectangle to obtain a cylinder,
and the blue line indicates where we glued the cylinder to obtain
a torus. Do we really need all this information? Is there some easier diagram which yields the
relevant data? Or are we forced to become artists to understand the topological properties
of these exotic spaces?

There is a very general construction of something called a “Cell Complex”, we will
first describe it. Take a closed ball and some topological space X. Now we will take any
continuous map

f : Sn−1 → X (2.13a)

or in other words
f : ∂D

n → X (2.13b)

and then we use the construction we just explained. That is, we glue a closed ball along its
boundary to X. We get a new set

Y = X ∪Dn
(2.14a)

or as sets
Y = X tDn

(2.14b)

The simplest posssible case is when X is just a one point space

X = {a} (2.15)

the boundary of the ball goes to a. This is a trivial map. We see in n = 2 what do we get
with identifying the boundary to a? Look at the stereographic projection backwards.

a
7→ a
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This general construction, gluing the boundary of closed n-balls to a topological space
(starting with n = 0, i.e., a set of vertices to begin with), gives us a cell complex.

Definition 2.1. The “n-Dimensional Cell Complex” can be done inductively by assum-
ing we have the (n−1)-dimensional cell complex denoted Xn−1 called the “(n−1)-Skeleton”,
now we have k-copies of n-discs and perform the same construction. We end up with a
sequence of skeletons X0 ⊂ X1 ⊂ X2 ⊂ . . . , if we consider Xn − xn−1 =

⊔
kD

n
k .

Lecture 3.

We have a sequence of sets Xk called a “k-Dimensional Skeleton”. We get a (k+ 1)-

dimensional skeleton by taking several closed balls D
k+1

i and take

fi : S
k → Xk (3.1)

to paste ∂D
k

i to the k-dimensional skeleton. If we consider only the open balls, then

Xk+1 = Xk tDk
1 t · · · tDk

n (3.2)

(NB: this is the disjoint union!) The skeleton is closed

Xk = Xk (3.3)

This is more or less the definition given, which is fine for the finite-dimensional case. In
general, we should note exclude the case when k ∈ N, then the cell complex is the union of
all the skeletons:

X =
⋃
k∈N

Xk (3.4)

But we should think about the topology. We simply say that

U ⊂ X is open if U ∩Xk is open ∀k. (3.5)

That’s reasonable. We impose the condition that the embedding

Xk ↪→ X (3.6)

is continuous. The preimage of an open set U ⊂ X is then such that U ∩Xk is open too.
That is, U ⊂ X is open if and only if U ∩ Xk is open. This means we take the weakest
possible topology in X. . . well, the weakest one satisfying the requirement U ⊂ X is open
⇐⇒ U ∩Xk is open. Lets consider some examples.

Example 3.1. Zero dimensional cell complexes are just collections of vertices. One-

dimensional cell complexes are called “Graphs”. We have D
1

be a line interval, the
endpoints are the vertices in the X0 skeleton. There are some cases when the graphs are
topologically equivalent, e.g., E and T are topologically equivalent.

We can prove some guys are topologically nonequivalent. The number
of components is a topological invariant, so the letter “i” is not equivalent to
any uppercase letter. We introduce a notion of the “Degree of a Vertex”
which is the number of edges going into the vertex, which is a bit ambiguous.
But the degree of a vertex is a topological invariant. Why? Because we can
give it a topological definition. The graph for T as doodled on the right, we
can pick three points of the graph such that

graph− (3 points) = U t V (3.7)

where U and V are open sets. Degree should be a local notion, defined by the behavior of
the graph in a neighborhood.
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We will say the degree of a vertex is less than or equal to k if in any neighborhood of
the vertex we can find k points such that after deleting our points, the connected component
of the vertex is smaller than the union of the edges coming into this vertex. In graph theory,
this operation of removing vertices in this manner is called a “Cut” (or “Vertex Cut”).

What is important is that degree of a vertex is defined in terms of connectedness.
Although this notion of “connectedness” is a topological notion, Graph theorists use the
confusingly obtuse term “Vertex Connectivity”. So vertices of degree k must be mapped
to vertices of degree k. Thus A 6∼= T is not a topological equivalence of graphs. If we cut any
point from T , it’s disconnected. However, if we cut a point in A while retaining connectedness,
it becomes topologically equivalent to H — any other cut renders it disconnected.

Consider the cell complex for the torus, as doodled on the right. We
see that the skeleton can be described by a rectangle as its only cell in
2-dimensions.

For a sphere we can consider it as many different cell complexes. For
example, we can construct the sphere by

D2/∂D2 ∼= S2 (3.8)

which has a single 2-cell, and a single vertex. On the other hand, if we take two discs D2
0

and D2
1, then consider

(D2
0 tD2

1)/(∂D2
0 ∼ ∂D2

1) ∼= S2 (3.9)

we have 2 vertices, 2 edges, and 2 faces.
Recall we discussed the Euler characteristic. We may define it as

χ(X) =
∑

(−1)nαn (3.10)

where αn is the number of n-cells. This is a topological invariant, it is the simplest one. It
obeys

χ(A tB) = χ(A) + χ(B) (3.11)

So

χ(torus) = (1 vertex)− (2 edges) + (1 face)

= 0.
(3.12)

Observe for the sphere we have

χ(sphere) = (2 vertices)− (2 edges) + (2 faces)

= 2.
(3.13)

Quite simple!
We consider a handle, obtained by taking a torus and

deleting an open ball. It is an example of a manifold/surface
with boundary. We may take a sphere and delete several discs.
We paste in each cut-out disc a handle.

Lecture 4.

The last thing we did was consider something called a “handle”. It is
a torus, but we cut out a hole. We take our hole anywhere we’d like. So
lets have it be touching a vertex, as doodled on the left.

Now what we claim is that we have an equality of cell complexes:

=

(4.1)



Lecture 4 10

We obtain the right hand side through a cut. But is a cut allowed? Usually not, but since
all the vertices are the same so it’s okay here. We identify the base points to be the same.
We also consider the Euler characteristic. Observe

χ(handle) = (1 vertex)− (3 edges) + (1 face)

= −1.
(4.2)

This is just the first step in our considerations.
The next thing we may consider is a sphere with several

holes, and we paste on each hole a handle, as doodled on the
right. So this is a sphere with g-holes and each hole we glue a
handle to it. We should draw its cell complex as a polygon with
4g-edges. What is the Euler characteristic for this surface? We
can calculate it quickly as:

χ(g-handled sphere) = gχ(handles) + χ(sphere with g holes)

(4.3a)

= gχ(handles) + χ
(
(S2 − g holes− (g holes

)
(4.3b)

= g(−1) + (2− g), (4.3c)

where we quickly compute

χ(S2) = χ
(
(S2 − g discs) ∪ (g discs

)
= 2 (4.4)

for the sphere.
One more interesting thing, take a rectangle and identify opposite edges

and reverse orientation. We doodle this on the right. We will cut this to get
two triangles along the dashed line. We erase the vertical line distinguishing
the two triangles and we get the cell complex doodled to the left. This is the
cell structure for the Mobius band. The boundary of the Mobius band is a

circle. We may take a sphere with several punctures and paste Mobius bands instead of
handles. We do not want to go into the theory of surfaces, so we leave it to the reader’s
imagination how this is done.

We will work with compact 2-dimensional manifolds.

Theorem 4.1. All compact 2-dimensional manifolds are spheres with handles or Mobius
bands.

4.1 Homotopy

Now we would like to go to the definition of homotopy. Before going to this topic, we’d
like to discuss operations on topological spaces. Let us take two sets A, B and we may
construct their (direct) product

A×B = {(a, b) | a ∈ A, b ∈ B}. (4.5)

Now everything is very simple, if we have

f : X × Y → Z, (4.6)

then this map is a function of two variables f(x, y). That’s obvious. Now there is a standard
procedure. We may consider one of the variables as a parameter. Fix x, we get a map

fx : Y → Z (4.7)
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We say
Hom(X × Y,Z) = Hom

(
X,Hom(Y,Z)

)
. (4.8)

This is a completely trivial formula.
We now say that A, B are topological spaces. Then A×B may also be considered as a

topological space. If a ∈ A has a neighborhood a ∈ U ⊂ A, and similarly let b ∈ V ⊂ B be
a neighborhood, then

(a, b) ∈ U × V ⊂ A×B (4.9)

is a neighborhood. And all other open sets of A×B are obtained by arbitrary unions and
finite intersections of these guys.

Now, we have topological spaces X, Y . We may speak of continuous maps

f : X × Y → Z (4.10)

and consider this construction f(x, y) = fx(y), obtaining a map

fx : Y → Z (4.11)

fixing x ∈ X. What about our beloved formula (4.11)? Is it correct when the maps we take
are continuous maps? It’s a meaningless question, we don’t know the topology of continuous
maps Y → Z. There is a meaningful question, namely what is the topology of the set of
continuous maps Hom(Y, Z)? This is not entirely honest, but not dishonest either! We
define the topology on Hom(Y, Z) to satisfy

Hom(X × Y,Z) = Hom
(
X,Hom(Y,Z)

)
. (4.12)

We would like to construct topological invariants (for this space of continuous maps).
One is the number of connected components. Consider Hom(X,Y ), if we fix X it’s

a topological invariant for Y ; and if we fix Y , the number of connected components of
Hom(X,Y ) is a topological invariant for X. But still we may consider the number of
components for Hom(X,Y ), and we indicate this by

Hom(X,Y ) = {X,Y } (4.13)

denoted with the brackets. Lets rephrase this in a more pedestrian way. Remember a
component is connected if for any pair of points, there is a path connecting them. We say

f0 ∼ f1 homotopic (4.14)

if and only if there is a path in the space of maps connecting these guys. What does it
mean? Well, we have a path ft where as t ∈ [0, 1] varies and ft ∈ Hom(X,Y ) continuously
varies. So really, it’s a path in Hom(X,Y ). But it is specifically such that

ft|t=0 = f0 and ft|t=1 = f1 (4.15)

This may be seen as a deformation of the path from f0 to f1. We avoid difficulties by writing

ft(x) = f(x, t) (4.16)

as a continuous family of paths. We can now give another definition; let

f0, f1 : X → Y (4.17)

be continuous, we say they are
f0 ∼ f1 homotopic (4.18)

if there exists a map
F : X × I → Y (4.19)

such that
F (x, 0) = f0(x) and F (x, 1) = f1(x). (4.20)

We did nothing new, we just gave a different definition of what we had1.

1Alright, you got me, it’s not even a different definition: it’s just slightly different notation!
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The first example is S1 → R2. It’s a closed curve, as doodled on the
right. We see every such map is homotopic to the zero map. How do we
see this? Well, the light gray lines indicate the t value, with t = 1 being
the outer most curve and t = 0 being the centered dot. This means that
S1 ⊂ R2 is contractible to a point. We may contract R2 to a point since

idR2 ∼ trivial map (4.21)

homotopic, which implies R2 is contractible. We can write

ft(x) = tx (4.22)

but that’s a triviality.
Lets consider the simplest nontrivial case. Lets take

S1 → R2 − 0 (4.23)

Here we have the following picture: if the point deleted is inside the circle, we
cannot do anything. We cannot contract it to a point. We could, on the other hand,

consider maps that go around the deleted point twice. This map is not
homotopic to either zero or the map which goes around the deleted point once.
Convince yourself this is the only topological invariant.

We have a space X and a space Y , we have maps

f : X → Y and g : Y → X (4.24)

We say X ∼ Y homotopic if and only if

f ◦ g ∼ idY and g ◦ f ∼ idX . (4.25)

Theorem 4.2. If we have homotopically equivalent spaces X and Y , then {A,X} = {A, Y }
for any space A, and {X,B} = {Y,B} for any space B.

We call {X,Y } the “Homotopic Classification of Maps”. We are going to prove
that this relation X ∼ Y homotopic, sometimes called “homotopic equivalence”, is really an
equivalence relation.

EXERCISES

xExercise 1 (Reflexivity). Prove or find a counter-example: for any X, X ∼ X homotopic.

xExercise 2 (Symmetry). Prove or find a counter-example: for any X, Y topological spaces,
X ∼ Y if and only if Y ∼ X.

xExercise 3 (Transitivity). Prove or find a counter-example: let X, Y , Z be topological
spaces such that X ∼ Y and Y ∼ Z homotopic, both imply X ∼ Z homotopic.

Lecture 5.

Remember we consider Hom(A,X) the maps of topological spaces A, X. We will use
the notation

Hom(A,X) = ΩA(X), (5.1)

we would like to stress that ΩA(−) is a functor. So

ΩA (f : X → X ′) = ΩA(f) : ΩA(X)→ ΩA(X ′) (5.2)

which amounts to composing

A
ϕ−→ X

f−→ X ′, (5.3)



Lecture 5 13

i.e., f ◦ ϕ for all ϕ ∈ ΩA(X). The identity morphism, and composition of morphisms, are
preserved under action by a functor. So for every map f : X → X ′ we have a map of “spaces
of maps”

ΩA(f) : ΩA(X)→ ΩA(X ′). (5.4)

What are the homotopy classes?
They are merely components of the function space. We may say the following: a set of

homotopic classes

{A,X} =

 set of
components
of ΩA(X)

 = π0

(
ΩA(X)

)
(5.5)

where π0 is an assignment to each topological space its set of connected components, but it
is also a functor! If

ψ : Z → Z ′ (5.6)

then
π0(ψ) : π0(Z)→ π0(Z ′). (5.7)

That is trivial. What can we say? We can say if

f : X → X ′ (5.8)

and
ΩA(f) : ΩA(X)→ ΩA(X ′) (5.9)

then
π0

(
ΩA(f)

)
: π0

(
ΩA(X)

)
→ π0

(
ΩA(X ′)

)
. (5.10)

Of course, functoriality is completely irrelevant here.
If ϕ0 ∼ ϕ1 homotopic, then f ◦ϕ0 ∼ f ◦ϕ1 homotopic too. What did we get? A remark

that if we have a map
f : X → X ′ (5.11)

then we obtain a mapping
{A,X} → {A,X ′} (5.12)

but that’s a triviality. Is this map a one-to-one correspondence, a bijection? We can construct
a map

g : X ′ → X (5.13)

and we induce
{A,X ′} → {A,X}. (5.14)

We would like it to compose with f to give the identity. We can require, of course,

f ◦ g = idX′ and g ◦ f = idX (5.15)

but that’s too much. We instead require

f ◦ g ∼ idX′ and g ◦ f ∼ idX (5.16)

both homotopic. Thus we get
{A,X} = {A,X ′}. (5.17)

We have obtained a classification of homotopy equivalent maps.
We may do something a little bit different. We may take

Hom(X,A)
def
= ΩA(X) (5.18)
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which is a contravariant functor. If we have

X ′
f−→ X, and X

ϕ−→ A (5.19)

then we may consider
ϕ ◦ f : X ′ → A. (5.20)

We have, if X ∼ X ′ homotopic, we may identify

{X,A} = {X ′, A}. (5.21)

If X ∼ X ′ homotopic, and Y ∼ Y ′ homotopic, then {X,Y } = {X ′, Y ′}.
One more definition. We would like to ask: when A ⊂ X is a subset homotopically

equivalent to the whole set? Definitely we have a map ι : A ↪→ X but we should have a map
in the opposite direction

f : X → A. (5.22)

We require two things. First that ι ◦ f ∼ idX . Second that

f ◦ ι ∼ idA (5.23)

is homotopic. Did we say anything new? Nothing! Now we will require more and get a
definition that implies homotopy equivalent. We require

f ◦ ι = idA . (5.24)

Then f is called a “Retraction”. By the way the statement that a retraction exists is a
non-trivial statement. It is impossible to retract [0, 1] to its boundary {0, 1} without tearing.
We should have a family of maps

ft : X → X (5.25)

where f0 = idX and f1 = ι ◦ f = f . We are a little bit sloppy here since

f : X → A and f0 : X → X (5.26)

so to be completely precise
f1(x) = (ι ◦ f)(x). (5.27)

So what does it mean? We require our retraction to be a “Deformation Retraction”
which is a very typical case of homotopy equivalence. This means A ⊂ X and A ∼ X
homotopic. Now, examples!

Consider the letter “P”. It is clear this guy is homotopically equivalent to “O”, i.e.
P ∼ O homotopic. Let us first note that

P ∼ D (5.28)

homotopic, and
D ∼= O (5.29)

homeomorphic, thus
P ∼ O (5.30)

homotopic. (Homotopic equivalence is weaker than topological equivalence.)
Let us suppose we have a cell complex X. First of all, we have Xk ⊂ Xk+1

for the k-dimensional and (k + 1)-dimensional skeletons. Suppose we deleted
one point from ever k-dimensional cell. Then Xk is a deformation retract of

Xk+1 − {deleted points}. We can work in every cell separately. We can stay in one of these
points, blow it up into a larger hole, and the boundary remains in tact.

Gradually everything goes to the boundary. This is not a very rigorous explanation.
A rigorous one is available. A cell complex comes from a ball of dimension (k + 1). If we
remove a point inside this ball, it is the same as a k-dimensional sphere multiplied by an
interval D̄k+1 − 0 = Sk × [0, 1).

Theorem 5.1. If A ⊂ X closed and it is “good enough” (not pathological) and A is
contractible (i.e., homotopically equivalent to a point), then X ∼ X/A homotopic.
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Lecture 6.

If X, Y are topological spaces, we may consider Hom(X,Y ) and it is also a topological
space. We may consider π0

(
Hom(X,Y )

)
the connected components (homotopy classes) of

the space. We say X ∼ X ′ homotopic if there exists maps

f : X → X ′, and g : X ′ → X (6.1)

such that
g ◦ f ∼ idX and f ◦ g ∼ idX′ (6.2)

are homotopic.

� � Note that we are abusing language a little. We have the notion of homotopic maps f ∼ g
and we construct from this a weak equivalence relation on topological spaces. We call this

“homotopy equivalence of topological spaces” or simply “homotopic spaces”.

For example, if X ∼ (point), then we say X is “Contractible”. In particular every
convex set C is contractible, it is obvious. We assume without loss of generality that 0 ∈ C,
we have

ft(x) = tx (6.3)

describe the contraction. Thus Dn, D̄n, Rn are contractible. But Sn is not contractible. If
we delete a single point from a sphere, we get

Sn − point ∼= Rn (6.4)

and that implies Sn − (point) is contractible.
There is a notion of retraction and deformation retraction. If A ⊂ X, then it is a

deformation retract if the inclusion is a homotopy equivalence. We have

f0(x) = x (6.5)

for all x ∈ X and
f1(x) ∈ A (6.6)

for all x ∈ X be a deformation retract. If X ⊃ A (where A is a “good” subset, i.e. closed and
we require if X is a cell complex that A be a subcomplex), is contractible, then X ∼ X/A
homotopic.

We will consider homotopic classifications of graphs (we will consider connected graphs,
this is not really a restriction).

Theorem 6.1. Every connected graph is homotopically equivalent to a wedge sum of cirlces
(“bouquet”).

If we are working with sets with marked points (X,x0), then we may consider

f : (X,x0)→ (Y, y0) (6.7)

which is a map f : X → Y such that f(x0) = y0.Then we may consider the set Hom
(
(X,x0), (Y, y0)

)
which is again a topological space, or part of the topological space Hom(X,Y ). We may
generalize this to a pair (X,A) where A ⊂ X, and we may consider maps

f : (X,A)→ (Y,B) (6.8)

which consists of a map f : X → Y such that f(A) ⊂ B. This is a straightforward gener-
alization of marked points. Again, we consider Hom

(
(X,A), (Y,B)

)
which is a topological

space, and again we may speak of connected components.
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If X, Y are topological spaces we may consider a disjoint union X t Y which is a
topological space with two components X and Y . We see

Hom(X t Y, Z) = Hom(X,Z)×Hom(Y,Z). (6.9)

Also note we have two notions of disjoint unions: a set theoretic sense, where we have

D̄n = Sn−1 tDn (6.10a)

be true, whereas the topological version has

D̄n 6= Sn−1 tDn (6.10b)

We may consider the wedge sum of X and Y to be

(X ∨ Y, ∗) = (X,x0) ∨ (Y, y0)

= (X t Y )/(x0 ∼ y0)
(6.11)

where we identify the marked points of the pointed spaces (X,x0) and (Y, y0). Thus

Hom
(
(X ∨ Y, ∗), (Z, z0)

)
= Hom

(
(X, ∗), (Z, z0)

)
×Hom

(
(Y, ∗), (Z, z0)

)
(6.12)

The marked point needs to be taken into account. The wedge sum is the coproduct in the
category Top∗ of topological spaces with marked point (“pointed topological spaces”).

Proof (of Theorem 6.1). It is trivial. Suppose we have a connected graph. Every edge is an
interval, but an interval is contractible. We can contract as long as the starting point of and
edge is different from its ending point. We can contract any edge with two different vertices,
which decreases the number of vertices. At some point we have only one vertex, and it’s the
wedge sum of circles.

So to give an example of what this would look like, we doodle:

7→ 7→ 7→ 7→

The second question: start with a completely general graph. How to say what is an
equivalent graph? The answer is very simple if we know the Euler characteristic. The Euler
characteristic of a compact set is a homotopy invariant. We will prove it next quarter.
Suppose our graph is simply connected, then the Euler characteristic is

α0 − α1 = (# vertices)− (# edges), (6.13)

and the wedge sum of k circles is

χ(S1 ∨ · · · ∨ S1) = 1− (# circles) (6.14)

as there is a single vertex. If we have homotopy equivalence, then we may compute the
number of circles in a moment.

Graphs are one-dimensional guys, and reduce to circles. Now we should consider

π0

(
Hom(S1, S1)

)
= Z (6.15)

We should see this as obvious. We saw

S1 → R2 − (point) ∼ S1 (6.16)

and the homotopy class of maps is characterized by the winding number.
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Lecture 7.

Lemma 7.1 (Homotopy Extension Property). Let us suppose we have a pair A ⊂ X closed
and we have a map

F : X → Y. (7.1)

We can restrict our F to A,
f = F |A (7.2)

Suppose we have a deformation ft : A→ Y such that f0(a) = F (a) for all a ∈ A. What we
would like to do is extend, construct a family of maps

Ft : X → Y (7.3)

such that on A, we have ft = Ft|A. We want to extend this deformation from A to the whole
space X. We say that this pair (X,A) has the “Homotopy Extension Property”.

Remark 7.2. We often abbreviate “Homotopy Extension Property” as HEP.

Lemma 7.3. If A is a (closed) subcomplex of the cell complex X, then the pair (X,A) has
the Homotopy Extension Property.

X

A

t = 0

t = 1

Proof (Particular Case). Take X to be an interval and A consisting of
boundary points. We have a map a map of the interval, and we have
a deformation over A. The situation is doodled to the right, where
the top picture shows X and in light gray A; the bottom picture is
A× [0, 1] ∪X × {0}. The parameter t of I is labeled as well. We would
like ft : A → Y , which is I × A → A a function intuitively taking the
bottom diagram as the domain. We may construct a retraction

ϕ : X × I → X × {0} ∪A× I (7.4)

which is precisely the dilapidated rectangle to the right. If we have such a map, we can
construct Ft = f ◦ ϕ where f = ft on A× I and f = F on X × {0}. Now it is completely
clear that Ft is an extension of ft and that’s it. If we have that retraction, we may apply

this to every case. Moreover, we may construct the deformation retraction.
This is very easy. The procedure is doodled on the left, where we have A× I
in light gray and the deformation retraction is dashed.

Case: Take X to be a disc, multiply the boundary by I and we get the cylinder. Again we
should take the retraction. We repeat the procedure, taking a point above the cylinder and
consider lines from A× I ∪D2 × {0} to the point. We may continue to generalize to higher
dimension cases.

The general case we take A ⊂ X and take a k-skeleton Xk and perform this induction
on k. We can assume we took this for (A∪Xk−1) ⊂ (A∪Xk). We extend from (k− 1)-cells
to k-cells, but this is precisely what we have done.

Remember we had A ⊂ X and A was contractible, i.e., we had a retraction from A to a
point. We claim X ∼ X/A homotopic. We prove this when A is “nice”, i.e., the pair (X,A)
has the Homotopy Extension Property.

Proof. We have idX : X → X and on A we can deform this map—A is contractible, so we
have ft : A→ A such that f0(a) = a and f1(a) = a0. But this is precisely the picture of the
Homotopy Extension Principle, we have a deformation of the whole space. This permits
us to extend from ft to Ft : X → X which has the property ft = Ft|A and in particular
f1 = F1|A which means F1(a) = a0 for a ∈ A. We have a map X/A → X, because all of
A went to one point. This is the main step of the proof, we should prove it’s a homotopy
equivalence but we’ll skip it.
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Recall we stated
{S1, S1} = Z. (7.5)

We will prove it, but it won’t be absolutely rigorous (we’ll be rigorous later in a more general
setting). On a circle we have an angular coordinate α ∈ [0, 2π), or α ∈ R subject to the
equivalence α ' α+ 2π. Therefore if we have

f : S1 → S1 (7.6)

we have two possibilities. One is, e.g.,

f(α) = 5α (7.7)

which is discontinuous at 2πk/5 for k = 1, . . . , 4. What to do? Well, we relax the map a
little bit to be

f : [0, 2π]→ R (7.8)

such that
f(2π) ≡ f(0) mod 2π. (7.9)

So in other words
f(2π) = f(0) + k2π (7.10)

for some k ∈ Z; then this f specifies a map of circles. But that is obvious. What is less
obvious is any map of circles may be written in this way.

This k ∈ Z is called the “Degree” of a Map. It is a triviality that

deg(f) = deg(g) =⇒ f ∼ g (7.11)

homotopic. Maps of the same degree are homotopic. To see this triviality, take

ht(x) = tg(x) + (1− t)f(x) (7.12)

and since deg(g) = deg(f) we see that deg(h) = deg(f) = deg(g) as well. There is no
problem here. Let k = deg(f) and k′ = deg(g), then

ht(2π) = t
(
k′2π + g(0)

)
+ (1− t)

(
k2π + f(0)

)
=
(
tk′ + (1− t)k

)
2π + ht(0).

(7.13)

But this works if and only if k = k′, otherwise we have an integer varying continuously while
remaining integral. . . and then anything is possible! We have f(ϕ) = kϕ be a map of degree
k, so all maps of degree k are homotopic to it.

EXERCISES

xExercise 4. Classify first 15 letters of English alphabet up to topological equivalence and
up to homotopy equivalence. (Consider capital letters only.)

xExercise 5. Find a letter that is homotopy equivalent to a torus with one deleted point.

xExercise 6. Calculate Euler characteristic of a sphere with g handles and h Moebius bands
attached.

xExercise 7. Calculate the Euler characteristic of a T-shirt. Find a graph that is homotopy
equivalent to a T-shirt.

xExercise 8. 5. Calculate Euler characteristic of projective plane. (We define projective
plane as two-dimensional sphere ‖x‖ = 1 where the point x is identified with the point −x.)
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Lecture 8.

We classified homotopy classes {S1, S1} using angular coordinates. The requirement of
continuity is that if f : S1 → S1, then

f(2π)− f(0) = 2πk (8.1)

where k ∈ Z is the degree of the map. It is an invariant of the homotopy class, i.e., a
“homotopy invariant”. Later we will see analogously

deg : {Sn, Sn} ∼= Z (8.2)

for n ≥ 1, where this is a one-to-one correspondence. But more generically, what is the
meaning of the “degree of a map”?

It tells us how many times the codomain is covered by the domain. Let us take for
definiteness f(0) = 0. The simplest case is

f(α) = kα (8.3)

What happens? Look, we see that the image raps around th circle k times, so f−1 is a
one-to-k function. More precisely,

f−1(0) =

{
0,

2π

k
, 2

2π

k
, . . . , (k − 1)

2π

k

}
. (8.4)

But this is a very simple case. We should solve

f(α) = 0 mod 2π, (8.5)

we know
f ′(α) < 0 or f ′(α) > 0 (8.6)

implies the curve grows with a positive/negative slope between the roots. We could say that
the degree is the algebraic number of solutions to the equation

f(α) ≡ α0 mod 2π (8.7)

where f ′(α0) 6= 0. We can only calculate the algebraic number of solutions for an equation.
We can prove the main (fundamental) theorem of algebra. One way to prove it is very

simple (our proof will not be rigorous!). A trivial proof of the fact that every algebraic
equation has a solution. What is an algebraic equation? We have a polynomial

p(x) = xn + a1x
n−1 + · · ·+ an, (8.8)

which is a map. It is a map
p : S2 → S2 (8.9)

where we recall
S2 = R2 ∪ {∞} (8.10)

by Stereographic Projection. But
p(∞) =∞ (8.11)

so our claim in Eq (8.9) is correct. We can compute the degree of this map, and that is very
easy since the degree is an invariant of the homotopy class. And look, we will write

pt(x) = xn + t
(
a1x

n−1 + · · ·+ an
)

(8.12)

what do we see? We see
p1(x) = p(x) (8.13a)
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is our original polynomial, and
p0(x) = xn (8.13b)

is the same degree as our original polynomial. But the degree of the map x 7→ xn is very
simple, since

p(x) ≡ α (mod 2)π (8.14)

has n > 0 solutions (well, n 6= 0 solutions). Thus p(x) is a map of degree n, or the algebraic
number of solutions is n. We have no right in replacing t to be

p̃t(x) = ak−1x
k + t

(
xn + a1x

n−1 + . . .
)

(8.15)

otherwise we violate continuity.
There is a simple trick to prove p(x) has a solution. We want to prove p(x) is zero

somewhere. Let us assume it is nowhere zero. We take

|x| = b (8.16)

and consider

ϕ(x) =
p(x)

|p(x)|
(8.17)

we can do this as we assumed p(x) 6= 0 for any x. It is a continuous map from a circle to a
circle. Let us calculate the degree of this map. We take b = ε > 0 to be small, then ϕ ∼ 0
homotopic. We can take b� 0, but then it is easy to see only the first term xn dominates.
We’ve seen that the degree of p is n in this case, so the degree of ϕ would be nonzero. A
contradiction! Caused by what? By dividing by p(x) since we cannot divide by 0.

Lecture 9.

Now,
{S1, S1} = Z (9.1)

the homotopy classification of maps S1 → S1 are in one-to-one correspondence with Z. So
we are a little bit sloppy here. But the important question: what about {S1, S2}? Well,
every map f : S1 → S2 is homotopically equivalent to the constant map.

The proof is as follows. Suppose f : S1 → S2, take x ∈ S2 which is not covered by the
image x /∈ f(S1). Then we may delete this x. But we get

S2 − {x} = R2 (9.2)

which is contractible. We may contract the map to a point. For physicists, it’s a good proof;
but for mathematicians—no! We could have a Peano curve, where

f(S1) = S2 (9.3)

i.e., a space filling curve. Differentiable, or even piecewise differentiable,maps of this kind
are impossible. We get a trivial lemma:

Lemma 9.1 (Trivial). If S1 → Rn, every such map may be approximated as good as you
want by piecewise linear maps.

Proof. But this is a triviality. Look, we have a circle, or an interval, we may decompose
it into small pieces. If we have a map to Rn, we may approximate the map along the
subdivision by a linear map. If the subdivision is in “small pieces”, then our approximation
is “good.”
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This lemma is pretty much universal, we may substitute the domain by S2 or any cell
complex. We may consider a rectangle, divide it up into “small triangles”—this is called a
“Triangulation”. If we consider

[0, 1]× [0, 1]→ R2, (9.4)

we may approximate it by piecewise linear functions. We extend it uniquely by linearity
(perhaps “affine” is a better choice of words than “linear”). We may approximate the maps
that are horrible by maps that are quite nice. But now, when we approximate, if we have
two closed maps to a sphere—they are homotopic. We may say every map is homotopic to a
good map.

A minor technicality with the codomain. We either generalize the notion of piecewise
linear map to S2, or (the easier choice) take a piece of S2 homeomorphic to a square. We
take the preimage of this to construct a piecewise linear map. Then we use the lemma on
extension of homotopy, we get an extension homotopic to the approximation, and so on.
Consider {Sk, Sn} for k < n. We see that all maps are homotopically trivial.

9.1 Fundamental Group

A very important notion that may be explained as follows: we have a space X, and
maps S1 → X. We want to consider their homotopy classes, but we want some algebraic
structure. So we need some structure, some operation. These maps are loops. We will
assume that our S1 has a marked point, and X has a marked point; we will say that we
would like to consider maps

(S1, ∗)→ (X,x0) (9.5)

which take the marked point to the marked point. What do we have? We have two loops
that start and finish at the same point. People use the word “concatenation”. We get an
operation of two loops. We write f ∗ g for the concatenation of g followed by f . f ∗ g = concatenation of

paths
Now we

may define the fundamental group. We consider

{(S1, ∗), (X,x0)} (9.6)

so if f ∼ f ′ and g ∼ g′, then
f ∗ g ∼ f ′ ∗ g′ (9.7)

homotopic. This operation f ∗ g is associative and has inverses. We thus have a group,
and we call it the “Fundamental Group” denoted π1(X,x0). As usual, this is a sloppy
definition. We will give a more precise one.

First: what is a loop? It is easier, formally, to work with intervals. So we will consider

f : [0, 1]→ X (9.8a)

and we require
f(0) = f(1) = x0 (9.8b)

both endpoints are mapped to the marked point. But this is the same as a map of a circle,
which starts and stops at the marked point. Why did we take [0, 1]? I don’t know! We could
take instead

f : [0, a]→ X

for any a > 0 with the condition f(0) = f(a) = x0. But topology doesn’t care about this:
[0, a] ∼= [0, 1] for topologists. Now we can consider the space of all these maps denoted by
Ω(X,x0) ⊂ Hom

(
[0, 1], (X,x0)

)
.Now we can modify this if we we consider the space of maps

Ω̃(X,x0) = {f : [0, a]→ (X,x0) | a > 0, f(0) = f(a) = x0}. (9.9)

Are these spaces the same? No, of course not. But

Ω ∼= Ω̃ (9.10)
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which is a triviality since
Ω ⊂ Ω̃ (9.11)

is embedded, we may retract Ω̃ to Ω. We may deform continuously [0, a] ∼ [0, 1] which is

why we may confidently state Ω ∼ Ω̃ homotopic.
We now want to define multiplication in these spaces. This is easy to do for Ω̃. If we

have
f : [0, a]→ (X,x0) (9.12a)

and
g : [0, b]→ (X,x0) (9.12b)

then we may define their concatenation as

h = f ∗ g : [0, a+ b]→ (X,x0) (9.13a)

where

h(x) =

{
f(x) 0 ≤ x ≤ a
g(x− a) a ≤ x ≤ b+ a.

(9.13b)

It is very clear in this picture this concatenation is an associative operation. We don’t need
to prove

(f ∗ g) ∗ h = f ∗ (g ∗ h). (9.14)

So Ω̃ has an operation called “concatenation”, and it is an associative operation. People
usually work with [0, 1] but concatenation is still defined for

f, g : [0, 1]→ (X,x0). (9.15)

We have

h(x) =

{
f(2x) 0 ≤ x ≤ 1

2

g(2x− 1) 1
2 ≤ x ≤ 1

(9.16)

for our concatenation operation. Is it associative? No, it will not be associative, because
look

(f ∗ g) ∗ h =


f(4x) 0 ≤ x ≤ 1/4

g(4x− 1) 1/4 ≤ x ≤ 1/2

h(2x− 1) 1/2 ≤ x ≤ 1

(9.17)

but if we consider instead

f ∗ (g ∗ h) =


f(2x) 0 ≤ x ≤ 1/2

g(4x− 1) 1/2 ≤ x ≤ 3/4

h(4x− 2) 3/4 ≤ x ≤ 1

(9.18)

So we do not have associativity, strictly speaking. But if we care up to homotopy, we have
full associativity for Ω̃.

Now we may define the fundamental group. What are we doing? Well, as a set π1(X,x0)
is the set of components

π0

(
Ω(X,x0)

)
= π0

(
Ω̃(X,x0)

)
(9.19)

but in Ω we have multiplication (and we have it in Ω̃ too), and — what a coincidence! — we
have multiplication in π0(−). And, moreover, π0(Ω(X,x0)) has multiplication be associative,
which implies associativity in the others.

We have a unit element, namely

e(t) = x0 (9.20)
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where we stay at the marked point. We may say

e ∗ f ∼ f. (9.21)

It is very easy to say
f−1(t) = f(1− t) (9.22)

as the path that goes in the opposite direction. We end up with the fundamental group.

Lecture 10.

We considered a space with a marked point (X,x0) and we constructed the loop space
Ω(X,x0) with loops that start and end at x0 ∈ X. We reviewed two constructions which
are homotopically equivalent. We also considered a binary operation called concatenation
which is intuitively “multiplication”. We can use this multiplication to define the group

π1(X,x0) = π0

(
Ω(X,x0)

)
(10.1)

which is just the set of components of the loop space. We proved this multiplication is
associative, the unit element exists, and inversion exists. Well, we did not “prove” it, but it
is obvious. We see

f−1(t) = f(1− t) (10.2)

and that e(t) ∼ f−1 ∗ f homotopic.
The fundamental group is not, strictly speaking, an invariant of a topological space. It

may depend on the marked point; the question is, can we (if we change the marked point)
say

π1(X,x0) = π1(X, x̃0)? (10.3)

If X is pathwise-connected, yes. If X is disconnected, we have no chance. We will give
two proofs of this. One is really short and (perhaps) the better, while the other is more
pedestrian.

Proof. We have a connected space X, and a path

h : [0, 1]→ X (10.4)

where h(0) = x0 and h(1) = x1. What we can do, we can say we have a deformation from
one marked point into the other. We have the homotopy extension property. So if we have
a deformation of a subset, we may extend it to a deformation of the whole space. So

(X,x0) ∼ (X,x1) (10.5)

homotopic, and we may go in the other direction by using h−1(t). It is very easy to see
these maps are homotopically equivalence. Then everything is fine.

This proof has the disadvantage that the homotopy extension principles holds almost
for every space. But if X is not among them, this proof does not hold.

Proof. We will give another proof that is perhaps a bit longer. Look we have these two
points x0, x1 and a connecting path. We consider a path in Ω(X,x0) but we want to get a
path that lives in Ω(X,x1). If h : [0, 1] → X such that h(0) = x0 and h(1) = x1, then for
any f ∈ Ω(X,x0) we induce a map h ∗ f ∗ h−1 ∈ Ω(X,x1). Thus if we are working with
connected spaces, the fundamental group does not depend on the marked point.
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Remark 10.1. Is this true? Not really, because we cannot say that this isomorphism

π1(X,x0) ∼= π1(X,x1) (10.6)

is canonical. The isomorphism depends on the choice of the path connecting marked points.
Why? Lets explain. These points x0, x1 can coincide, why not? No one said they had to be
different! If they coincide, then the path connecting the marked points is a loop. Then our
formula

f 7→ h ∗ f ∗ h−1 (10.7)

can be understood at the level of the fundamental group. At the level of the fundamen-
tal group, this gives us a nontrivial inner automorphism of π1(X,x0). It is a canonical
isomorphism when the group π1(X) is Abelian.

When working with the fundamental group, we will neglect the marked point. It is a
little dangerous.

Now, let us consider {S1, X} the classification of maps from the circle to X. We assume
X is connected. We see now that

π1 : (X,x0)→ {S1, X} (10.8)

we get a group. So lets say something that definitely is quite trivial, namely: we can say
that the conjugacy classes of π1(X,x0) is also a map to {S1, X}. We are really saying if
two guys are conjugate

h−1gh = f (10.9)

then they are mapped to the samje homotopy class. We can identify maps S1 → X with
conjugacy classes in the fundamental group.

But now we would like to calculate the fundamental group. Two fundamental groups
are quite obvious. The first is

π1(S1) = Z. (10.10)

This is because we know
{S1, S1} → Z (10.11)

is a one-to-one correspondence.
The other fundamental group that we know is

π1(Sn) = 0 (10.12)

for n > 1. It is the trivial group!
There are (at least) two ways to compute the fundamental group. One is by the van

Kampen Theorem. We represent
X = A ∪B (10.13)

and we will assume A, B, and A ∩ B are connected; we also assume A and B are open.
(Pop quiz: is A ∩ B open?) We will consider the simplest case when A ∩ B is simply
connected. (Here “Simply Connected” means connected and the fundamental group is
trivial.) Without loss of generality, we will say that our marked point ? ∈ A ∩ B. The
typical case is when considering the wedge sum of two circles, the intersection is a single
point, but then we work with closed sets. Well, okay, but that doesn’t matter! In this case,

π1(X, ?) = free product of π1(A, ?) and π1(B, ?) (10.14)

The free product is a general notion in group theory. Let G1, G2 be groups. Their free
product can be deduced in terms of generators a1, . . . , am of G1 and b1, . . . , bn of G2; we
have some relations on G1 as well as some on G2. Then we combine generators and relations.
This isn’t a very good definition, since it depends on the choice of generators and relations.
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We could define it in a slightly different way. Consider

Hom(G1 ∗G2, G)

where G1 ∗G2 is the free product. We say

Hom(G1 ∗G2, G) = Hom(G1, G)×Hom(G2, G) (10.15)

which doesn’t explicitly depend on the generators and relations of G1 and G2. We have a
pair of homomorphisms that act on elements of G1 and G2 respectively. Now we’d like to
explain why we have this.

EXERCISES

xExercise 9. Let f denote a differentiable map of a circle into another circle. In angular
coordinates the map f can be represented by a multivalued function, but its derivative f(α)
is well-defined. Prove that the degree of the map can be represented as an integral

deg(f) =
1

2π

∫ 2π

0

f ′(α)dα. (10.16)

xExercise 10. Prove that a polynomial map p : R→ R where p is a polynomial of degree n
can be extended by continuity to a map of circles. (We use the fact that adding to R one
point at infinity we get a circle). Calculate the degree of this map of circles.

Lecture 11.

So, recall we discussed van Kampen’s theorem. The formulation involved a notion of
“free product” of two groups G1 ∗G2. We gave two descriptions. One took the generators

〈ai | rk〉 (11.1)

of G1 and
〈bj | sm〉 (11.2)

of G2. Then we defined G1 ∗G2 to be

〈ai, bj | rk, sm〉. (11.3)

The other explanation looked at the coproduct in the category Grp. It is then

Hom(G1 ∗G2, G) = Hom(G1, G)×Hom(G2, G) (11.4)

Sometimes it is useful to have a more explicit description, namely elements of the free
product a1b1a2b2(. . . ) where ai ∈ G1 and bj ∈ G2 are arbitrary elements. The only problem
is how do we find the product of two guys? It’s easy,:

(a1b1 · · · anbn)(a′1b
′
1 · · · a′mb′m) = a1b1 · · · anbna′1b′1 · · · a′mb′m (11.5)

but if ai = 1 we don’t write it. So, for example, a11b1 = a1b1.
The notion of the free product is closely related to the notion of free groups. Consider

the free groups Fm, Fn with m and n generators respectively. We see

Fm ∗ Fn = Fm+n. (11.6)

Since
F1
∼= Z (11.7)

we deduce
Fm ∼= Z ∗ · · · ∗ Z︸ ︷︷ ︸

m times

. (11.8)
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But enough humorless group theory!
We have a space X covered by two open sets A, B. We also have A, B, A ∩ B be

connected. (Pop quiz: is X connected?) We take ? ∈ A ∩B. Then

π1(X, ?) =
(
π1(A, ?) ∗ π1(B, ?)

)
/N (11.9)

where N is some normal subgroup. Our question is then regarding the description of the
subgroup. First, a proof of our statement.

We should construct a morphism of the free product to π1(X, ?):

π1(A, ?)× π1(B, ?)→ π1(X, ?) (11.10)

We should prove it is surjective. If we write an element of the free product as a1b1 · · · akbk.
We can easily construct a morphism

i∗ : π1(A, ?)→ π1(X, ?), (11.11)

and we have another morphism

j∗ : π1(B, ?)→ π1(X, ?). (11.12)

Then we have
a1b1 · · · akbk 7→ i∗(a1)j∗(b1)(· · · )i∗(ak)j∗(bk) (11.13)

It is a morphism, but we should prove it is surjective. We have basically done it, because
look: we have a space X which is covered by A and B. We can take any loop that goes
through A and B by inserting a loop in A ∩ B. Then we really have two loops: one in A
and the other in B that agree at the two points obtained from the loop in A ∩B.

We will commit a crime—it’s not a felony but it is a misdemeanor. We have a1, . . . , an, b1, . . . , bm
be the generators with relations ri and sj . We are saying we should impose new relations,
that’s what happens when we factorize by N . What are these relations? Consider

u ∈ π1(A ∩B, ?), (11.14)

it can be mapped by
α : π1(A ∩B, ?)→ π1(A, ?) (11.15a)

and
β : π1(A ∩B, ?)→ π1(B, ?). (11.15b)

There is no doubt we should add the relation

α(u) ∼ β(u) (11.16)

Why? This means they will give the same element in π1(X, ?). The relations are in N , the
question is: do we have something else? No, N is generated by these relations.

� We are a little bit sloppy here. IF we are being completely honest, we really mean (i∗ ◦α)(u) =
(j∗ ◦ β)(u). But this is nothing terrible, so we continue to write α(u) = β(u).

Theorem 11.1 (van Kampen). If ai are generators of π1(A, ?), ri are the relations for
π1(A, ?), and if bi are the generators of π1(B, ?) and sj are its relations; THEN π(X, ?) has
generators ai, bj with relations ri, sj and α(u) ∼ β(u) for any u ∈ π1(A ∩B, star).

We need to prove that there are no other relations. A precise proof can be found in
Hatcher [3, §1.2]. A more general version of the theorem may be found in May [4, §2.7].
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Sketch of Proof. What should we do? We have the following picture: A, B, A ∩B; they’re
all open, but this is irrelevant; if we have a closed path in X, then we can divide our path
into small pieces in such a way that every small piece is in either A, B, or A ∩ B. We
consider another such path. We consider the deformation of these paths. But a deformation
is a function of a rectangle. We divide up the rectangle such that they are only in A, B, or
A ∩B. Then each rectangle is a deformation only in A, B, or A ∩B. This is not a precise
proof, which may be found in Hatcher.

Now we may apply this theorem in many ways. We may consider this for connected
cell complexes. Our cell complex may be described in the following way:

X = X1 ∪ (cell) (11.17)

Really we may say it is the disjoint union of open sets. We take

A = X1 t
(
cell− center

)
, (11.18)

so really we may say that
A = X − (center of the cell) (11.19)

And
B = (open cell). (11.20)

At this moment, let us say the dimension of the cell is 2. Let us try to get the answer for
this particular case. First

π1(X, ∗) = π1(X1) (11.21)

since A is homotopically equivalent to its boundary. So we have π1(B, ∗) be trivial since it
is contractible. What about π1(A ∩B)? Well, we see that

A ∩B ∼ S1 × (0, 1) ∼ S1 (11.22)

homotopic, so
π1(A ∩B) ∼= Z. (11.23)

We should factorize π1(X1) by relations from A ∩B. If u ∈ A ∩B, it gives us an element in
X1, so it gives us a relation in X1. Observe, higher dimensional cells do nothing.

Lecture 12.

TODO: need to carefully
reconsider notation used

We really did the main job with computing the fundamental group. We have a set X,
a 2-dimensional cell σ2, we consider X ∪ (σ2− 0). The intersection is σ2− 0 ∼ S1 homotopic.
Then apply van Kampen’s theorem, we have generators from X and from σ2, we apply
relations from X, and relations induced from the intersection. We have

π1(S1)→ π1(X) = π1

(
X ∪ (σ − 0)

)
(12.1)

Note σ2 is open, so it has a trivial fundamental group. When we attach a 2-cell, it gives us
a new operation.

Lets consider a k-cell: X ∪ σk, X ∪ (σk − 0). If k > 2, we have the intersection give us
a trivial fundamental group.

How do we calculate π1(X) for some cell complex X? Easy, take the fundamental group
of the skeleton of the cell complex π1(X1). We have a graph, homotopic to a bouquet with
k circles. This is all if X is connected. Then

π1(X1) ∼= Fk (12.2)

is the free group with k generators. The Euler characteristic of the bouquet is

χ(X1) = 1− k. (12.3)
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We then attach 2-cells, and each one gives us a relation. Then higher dimensional cells, and
they do nothing! So

π1(X) ∼= π1(X2) (12.4)

is a canonical isomorphism. Its generators are given by π1(X1) with a relation for each
2-cell. We don’t really know if the group is trivial or not, and we can’t know either. For the
fundamental group we can get any group. We can add the 2-cells in any particular order to
get relations. Furthermore, we can continue adding 2-cells to get any relation.

What we can really calculate is the “Abelianization” of π1 which is π1/[π1, π1]. This
means we have generators and we have relations. If ai are our generators, then we have the
additional relation

aiaj = ajai (12.5)

So we have an Abelian group. This is an invariant which can be calculated efficiently. It is
the first homology group.

Example 12.1 (g-Handled Sphere). TODO: draw pictures on pp.
33–34

A sphere with g-handles. We have the same picture
for a single hand repeated several times. We have 2g edges and a single 2-cell. So if we want
to look at the fundamental group, look at what happens. We have a1, b1, . . . , ag, bg and
only 1 vertex. The fundamental group is a group with 2g generators. We should have 1
relation because we have a single 2-cell. We delete one point and consider a loop around the
deleted point. It is a circle which cannot be contracted, and thus has the relation

a1b1(a−1
1 )(b−1

1 )(a2b2)(a−1
2 )(b−1

2 ) = 1 (12.6)

in the case g = 2. But we still do not know, maybe this group is trivial. We go to
Abelianization—-all generators commute. But then this relation becomes trivial! So in this
case, Abelianization gives us a free Abelian group with 2g-generators. We accidentally have
a theorem.

Theorem 12.2. The number of handles on a surface is a topological invariant.

Example 12.3. Consider a sphere with g-handles and a hole. We have more generators.
For g = 2, we have a1, b1, a2, b2, c. We have a relation of the form

a1b1(a−1
1 )(b−1

1 )(a2b2)(a−1
2 )(b−1

2 )c = 1 (12.7)

We see we get a free group. We included a generator that is not necessary: we may express
c in terms of ai, bj . So we end up with 2g generators, no relations, and thus a free group.

12.1 Knots

∼

We would like to consider the topological classifi-
cation of knots. We consider R3 (or S3, for us it’d be
equivalent). We consider a subset of R3 topologically
equivalent to a circle. So a knot may be doodled on
the right. But this means all knots are topologically
equivalent to S1. Consider two knots

K ⊂ S3, and L ⊂ S3 (12.8)

If we can find a homeomorphism
ϕ : S3 → S3 (12.9)

such that
ϕ(K) = L (12.10)

then two knots are “Isotopic”.



Lecture 13 29

We may consider π1(R3 −K), or π1(S3 −K) since S3 = R3 ∪∞ through stereographic
projection. From van Kampen’s theorem, we have

π1(R3 −K) ∼= π1(S3 −K) (12.11)

be a knot invariant. We see
S3 −K ∼= (R3 −K) ∪D3 (12.12)

where D3 is an open ball “near infinity”. By van Kampen’s theorem, the intersection (D3)
is trivial, so we have

π1(R3 −K) ∼= π1(S3 −K) (12.13)

which is an isomorphism. (Pop quiz: is it canonical?)
We would like to introduce the notion of a “Link” which is a disjoint union of knots

(i.e., of topological circles). For example is a link, but it is a trivial link. But is
two linked circles. These two pictures are topologically different. We can take

π1(S3 − link)

and this will be the invariant of a link. If the invariant differs for two links, we have two
topologically inequivalent links.

Lecture 13.

13.1 Projective Spaces

Recall the notion of a projective space Pn. Consider the (n + 1)-dimensional vector
space Fn+1 over F. Consider all lines in Fn+1 that contain the origin. We need to know only
one point—then we know the line. (Why?) If x ∈ Fn+1 and x 6= 0, then λx describes the
lines, for arbitrary λ ∈ F. The set of all such lines is the projective space over F, denoted
FPn. We can take

(Fn+1 − 0)/(x ∼ αx)
def
= FPn (13.1)

This is another description of it.
A point in projective space may be described by “Homogeneous Coordinates”

denoted
(x0 : x1 : · · · : xn) ∼ (αx0 : αx1 : · · · : αxn). (13.2)

(In physics, we have a similar picture where wave functions are defined up to a constant
factor.) So this projective space contains an n-dimensional vector space

Fn ⊂ FPn. (13.3)

How? Consider x0 6= 0. Every point with this condition is equivalent to

(x0 : x1 : · · · : xn) =

(
1 :

x1

x0
: · · · : xn

x0

)
. (13.4)

We take
yi

def
= xi/x0, (13.5)

then
(x0 : x1 : · · · : xn) = (1 : y1 : · · · : yn) . (13.6)

So Fn is sitting in projective space. The next thing we can do is take our projective space
and delete this Fn. What do we get? Well, it’s quite simple: we get all the points where
x0 = 0. We thus get the picture that

FPn − Fn = FPn−1. (13.7)
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So if you like, we may say that
FPn = Fn t FPn−1 (13.8)

disjoint union of topological spaces.
Now we go to topology and consider two cases: F = C and F = R. Lets look at the

simplest situations. What is RP1? It is very easy to see

RP1 = S1 (13.9)

We see
RP1 = R1 t RP0 (13.10)

but RP0 consists of just a single point. What is CP1? Of course, we see

CP1 = C ∪ CP0

= C ∪ {point}
= S2

(13.11)

as desired.
Let us look a little bit at

RPn = (Rn+1 − 0)/(x ∼ λx) (13.12)

But we may do something different. Namely every point on Rn+1 − 0 ∼ Sn, why? We may
divide x by ‖x‖ so every point on RPn may be represented by a point on a sphere. But still
we should identify x ∼ λx where both are on the sphere. . . but this happens when |λ| = 1.
Therefore the only thing we should do is

RPn = Sn/(x ∼ −x) (13.13)

This may be represented by
RPn = Rn t RPn−1, (13.14)

which is how we get a cellular decomposition (where we have a single k-cell in every dimension
k ≤ n).

For the complex case, we see

CPn = (Cn+1 − 0)/(x ∼ λx)

= S2n+1/(x ∼ λx)
(13.15)

where |λ| = 1. Is this true? Let first note

Cn+1 = R2(n+1) (13.16)

but we demand ‖x‖ = 1 which eliminates a dimension, giving us

R2(n+1)/ ∼= S2n+1 (13.17)

This implies |λ| = 1. We can consider this set S1 = {λ : |λ| = 1} as a group. This group
acts on S2n+1 simply by

x 7→ λx (13.18)

One more definition of CPn. One more definition of CPn. This is

CPn = S2n+1/S1 (13.19)

where we mod out by this action of S1; we can write similarly

RPn = Sn/Z2 (13.20)
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since λ ∈ R and |λ| = 1 implies λ = ±1. Take n− 1 we get

CP1 = S3/S1 = S2 (13.21)

In a different way, we may say this as follows: there exists a mapping

h : S3 → S2 (13.22)

such that the preimage of a point h−1(point) = S1. We call h the “Hopf Map”, later we
will see h is not homotopic to 0, so it’s very non-trivial.

13.2 Knot Rejoinder

How do we use h to analyze the structure of knots? We did say

h−1(x) = S1 (13.23)

for any x ∈ S2. We can see that

h−1(disc) =

(
solid
torus

)
. (13.24)

How? Well, we could see the preimage h−1(S1) is a torus, and S1 is a boundary of a disc.
So we fill in the disc “continuously” and we fill in the torus.

Lets be clear here. We are looking at S2 by constructing it from two 2-discs

S2 = (D̄2
0 t D̄2

1)/(∂D̄2
0 ∼ ∂D̄2

1) (13.25)

We let
A = h−1(D̄2

0) (13.26a)

and
B = h−1(D̄2

1) (13.26b)

and we will use van Kampen’s theorem.
So

h−1(S2) = A ∪B (13.27)

where A, B are solid tori, and
A ∩B = T 2 (13.28)

is a (non-solid) torus. We obtain this since

S3 = D̄2 ∪ D̄2. (13.29)

We obtain this from the Hopf map.
Consider the solid torus in R3, it is bounded by the torus in R3. Consider this stuff in

S3 = R3 ∪∞. (13.30)

We consider
S3 − (open solid torus). (13.31)

What do we get? A solid torus! We can see this result in our picture also. Of course, this
is something with the solid torus as a boundary. The analog of the solid torus in higher
dimension — we take a body with handle, it’s called a “Handle Body”. It’s important to
consider representations of them in “Heegaard Diagrams”. . . but we won’t speak of it here.

We can take as a knot invariant π1(S3 − K). Let us take for K a trivial knot, i.e.,
K = S1. Then it’s very simple, because we can take a small neighborhood of S1, which is a
solid torus, and

S3 −K ∼ solid torus ∼ circle (13.32)
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are homotopy equivalences. Therefore

π1(S3 −K) ∼= π1(S1) ∼= Z (13.33)

But we would like to distinguish two unlinked circles from two linked circles: vs. .
We may take the first circle as K,

S3 −K =

(
solid
torus

)
(13.34)

we then consider the second circle as an elemetn of π1(S3 −K). If it’s trivial, the knots are
unlinked.

A knot is a topological circle in R3 or S3. Now it is possible the circle lies on a torus.
Then it’s called a “Torus Knot”. The next problem is to find

π1

(
S3 − (solid torus)

)
.

This will give us an invariant of the knot, we can classify them.

EXERCISES

xExercise 11. Let Fp be the finite field with p elements, where p is prime. What is the
cardinality of the set FPnp?

xExercise 12. Projective space RPn can be obtained from the sphere Sn by means of
identification of antipodes (x ∼ −x). Describe the cell decomposition of RPn and use it to
calculate its fundamental group.

xExercise 13. Let us consider an n-dimensional manifold X and its subspace X = X −Dn

(the space X with deleted open ball Dn). Express the fundamental group of X in terms of
the fundamental group of X.

xExercise 14. The connected sum of two n-dimensional manifolds X and Y is defined by
means of deleting of open balls from X and Y and identification of boundaries of deleted
balls. (In notations of Problem 13 we identify the boundary spheres in X and Y ). Calculate
the fundamental group of connected sum.

Remark 13.1. In Problems 13 and 14 we assume that n > 1. In the case n = 2 you can use
the fact that every two-dimensional compact manifold is a sphere with attached handles
and Moebius bands; if the manifold is not compact one should consider a sphere with holes
(with deleted closed disks) instead of sphere.

Lecture 14. Toric Knots.

We would like to talk about toric knots. Recall last time we did the following: we
considered

S3 =

(
solid
torus

)
∪
(

solid
torus

)
(14.1)

Remember that
R3 ∪ {∞} = S3, (14.2)

so

R3 −
(

solid
torus

)
=

(
solid
torus

)
∪ {∞} (14.3)

If we take a knot on the solid torus, we get a knot. Specifically when it is a non-self-
intersecting curve on the torus.

a a−1

b

b−1

Recall a torus is identified from a square as doodled on the
right, with the relation

aba−1b−1 = 1 ⇐⇒ ab = ba, (14.4)

so we get the free Abelian group with 2 generators. We may consider instead R2/Z2 which
is equivalent to what we have drawn.
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{
{m

n

But a vertex (a, b) ∼ (a + 1, b) ∼ (a, b + 1). If we’d like to draw a closed
curve on a torus we draw a line. Suppose we draw it on R2 with slope n/m
for m,n ∈ Z. Well, we can see if

gcd(m,n) = 1 (14.5)

then the curve on the torus (obtained by transporting the line using the
quotient R2/Z2) is not self-intersecting. However, for

gcd(m,n) 6= 1 (14.6)

this curve covers the torus several times. There is another way to look at this picture. We
may say when we factorize R2/Z2, we may choose the basis in whatever manner we want.
The canonical choice is (0, 1) and (1, 0) . . . but we may choose instead (a1, b1) and (a2, b2)
but we require

det

(
a1 b1
a2 b2

)
= ±1, (14.7)

so we have (
m
n

)
= x

(
a1

b1

)
+ y

(
a2

b2

)
(14.8)

for any integers m and n. This is a linear equation, but we need integer solutions. This
demands the determinant conditions in Eq (14.7).

If we have gcd(a1, b1) = 1, then we may always find a (a2, b2) such that

det

(
a1 b1
a2 b2

)
= 1, (14.9)

but that’s trivial. To create a non-self-intersecting closed line, we can choose gcd(m,n).
What can we say about the complement of the curve? If we delete a single edge of

the cell complex, we end up with a cylinder. How can we see this? Well, recall how we
constructed the torus from the rectangle through first constructing a cylinder and then
gluing the cylinder’s top and bottom together. We simply undo this last step. For any line
described by a relatively prime pair m and n, we can change the coordinates to get the same
picture. What is the fundamental group generated by this guy? Well, if

u = (1, 0) (14.10a)

and
v = (0, 1) (14.10b)

then
umvn = 1. (14.10c)

Every solid torus has its fundamental group be Z. But

(solid torus) ∼ S1 (14.11)

homotopic, so we see why!
We take m,n ∈ Z such that gcd(m,n) = 1, in the torus this gives us some information

in the fundamental group, namely

π1(torus) = umvn. (14.12)

We have two morphisms to fundamental groups of solid torus:

π1(torus) = umvn - π1

(
solid-torus

)
= vn

π1

(
solid-torus

)?

= um

(14.13)
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We wil use van Kampen’s theorem, and use the fact that

S3 −K =

open
solid
torus

 ∪
open

solid
torus

 ∪ (T 2 −K) (14.14)

for some knot K, and T 2 = S1 × S1 is the torus. We would like to apply van Kampen’s
theorem, and then we have a problem: the conditions of the theorem are not satisfied. Oru
space

S3 −K = A ∪B (14.15)

should be represented as the union of open sets A, B. We considered morphisms

π1(B)← π1(A ∩B)→ π1(A) (14.16)

but here we do not have this situation. The union of open sets are not the whole space. We
also have this piece (T 2 −K). If we consider the closures of the open tori, then (T 2 −K) is
contained in the other two. But this implies

(solid torus) ∩ (solid torus) = (T 2 −K), (14.17)

but it is not open! Well from the homotopy viewpoint, nothing happens.
First, this intersection has fundamental group

π1(A ∩B) = Z (14.18)

But this generator may be written as umvn, which is mapped to um for one of the solid
torus’ fundamental group, and vn for the other’s. The relation is simple:

um = vn. (14.19)

We computed the fundamental group of the toric know — but we have a question: can we
say that toric knots are “the same”? It depends on m,n ∈ Z. If we have the generators and
relations, there is no algorithm to determine the group2. This is not an expression of our
ignorance, but our knowledge: we know there exists no such algorithm.

The first tool is Abelianization. We may factorize with respect to our commutator. But
if

gcd(m,n) = 1, (14.20)

then
π1(S3 −K)/[−,−] ∼= Z, (14.21)

but this doesn’t work in any case for knots — Abelianization of π1(S3−K) always results in
Z. We may take the fundamental group and factorize with respect to its center

(
π1/Z(π1)

)
this is also an invariant of the knot. So for 〈u, v | um = vn〉, what is the center?

First we see that um, vn are both in the center, since the both commute with u and
v. They’re really generators for the center. If we consider π1/(u

m = vn), we get a group
〈u, v | um = vn = 1〉. What we get is the free product

π1/(u
m = vn) = Zm ∗ Zn. (14.22)

But what can we do? Again, we may take the Abelianization of this group

(Zm ∗ Zn)/[−,−] = Zm ⊕ Zn, (14.23)

which becomes the direct sum. We have the same relation plus commutativity:

〈u, v | um = vn = 1, uv = vu〉.
2This is a “well known” result in group theory.
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Since gcd(m,n) = 1 we obtain

(Zm ∗ Zn)/[−,−] = Zmn, (14.24)

so we get mn is an invariant of the knot. But we still don’t know if m, n separately are
invariants of the knot.

We return to Zm ∗ Zn, and consider torsion elements of this group. We may consider
the maximal order of the torsion elements, and one can provide it is max(m,n). So we have
complete information, assuming m > 0 and n > 0 (which we can always assume). It is
sufficient to say both m and n are invariants. The lesson is we have some tools to answer
these questions. If the group is finite, look at the order of elements, etc.

Lecture 15.

We covered van Kampen’s theorem, which lets us calculate the fundamental group.
There is another approach which is just as powerful.

Theorem 15.1. Let X be simply connected, suppose a group G acts freely on X. IF we
consider the space of orbits X/G, then π1(X/G) = G.

What does it mean “G acts freely”? Well, G acts on X means that for every element
g ∈ G we have a transformation

ϕg : X → X (15.1)

and we require
ϕgh = ϕgϕh (15.2a)

and
idX = ϕ1. (15.2b)

But we can write this as
ϕg(x) = gx, (15.3)

where we have associativity
(gg′)x = g(g′x). (15.4)

This is the left action; there is a right action which is more or less the same stuff, but written
on the right, e.g., ϕgh = ϕhϕg. If we don’t say explicitly otherwise, we use the left action.

We have a notion of an “Orbit” of every point. For one point, an orbit is

Gx = {gx | g ∈ G}. (15.5)

We also have a “Stabilizer”

stab(x) = {g ∈ G | gx = x} = Hx (15.6)

It is a subgroup of G. A free action (if the group is finite) is very simple: all the stabilizers
are trivial.

When X is a topological space, we require

ϕg : X → X (15.7)

to be continuous. We may say a little bit more, namely: what does it mean we have a free
action on a topological space? We have an orbit, and each point in the orbit is distinct. So
if g, g′ ∈ G and g 6= g′, then

gx 6= g′x. (15.8)

What may we do? We may take a neighborhood of a point of the orbit. Then we get a
neighborhood of every point of the orbit. Here we should note we assume X is at least
Hausdorff. We may take U “sufficiently small” so that

U ∩ gU = ∅, (15.9)
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we see that we may say that
giU ∩ gjU = ∅. (15.10)

Now we may define the free group action.

Definition 15.2. A group G “Acts Freely” on X if for any x ∈ X we may find a
neighborhood U 3 x such that gU ∩ g′U = ∅ for distinct g, g′ ∈ G.

Really we have already used this notion. Well, a particular case of it. We computed the
fundamental group of S1. But really we have

S1 ∼= R/Z (15.11)

where the action is
x 7→ x+ n. (15.12)

The orbit of 0 ∈ R is precisely Z. We have then

[0, 1]/(0 ∼ 1)

we have a circle. So π1(S1) = Z by our theorem.
The torus is a more complicated example, since R2/Z2 describes the torus. The action

is
(x, y) 7→ (x+ n1, y + n2) (15.13)

So
π1(T ) = Z2. (15.14)

More generally, the multidimensional torus is obtained from

Tn = Rn/Zn (15.15)

and this gives us
π1(Tn) ∼= Zn. (15.16)

One more example. On the sphere we have the action of the group Z2. That is

S2/Z2
∼= RP2, (15.17)

so we have
π1(S2/Z2) = π1(RP2) = Z2. (15.18)

We can generalize to RPn = Sn/Z2 for n ≥ 2. We see

π1(RPn) = Z2. (15.19)

But we cannot do this for S1, since it is not simply connected!
Let us suppose we have a path on X/G. It can be lifted to X. What does this mean?

Recall we have a natural map
f : X → X/G. (15.20)

When we have a point y ∈ X/G, it may be considered by a set of points {x ∈ X | f(x) = y}.
We may lift y to x. We may do this several different ways, and the number of different ways
is precisely the number of elements of G. In other words

|G| = |f−1(y)| (15.21)

describes the cardinality. So this lifting of the path is not unique.
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V

U

gU
We divide our path into small pieces. This is doodled on the left. We
lift the end point. Consider a neighborhood U such that

gU ∩ U = ∅ (15.22)

for any g 6= 1 in the group G. But

f(U) = V = f(gU). (15.23)

We may say that

f−1(V ) =
⊔
g∈G

gU. (15.24)

We would like to lift our piece of path contained in V , but a path is continuous. Therefore
if we lift it, the piece of path should be lifted and moreover the small piece is lifted uniquely.
We want to lift the whole path. Now we use compactness to have a finite covering that may
be lifted in a unique way.

Lemma 15.3. For every path, there is a unique lifting of the path for every lift of the
starting point.

So now we would like to say the following thing: suppose we have a family of paths gt(τ)
and everything varies continuously. Then the lifts also vary continuously. This follows almost
immediately from uniqueness. We assumed that the starting points are lifted continuously.
Now we can prove the theorem.

Proof (Theorem 15.1). This correspondence is very simple. Take any fixed (i.e., not varying)
point ∗, we can consider its orbit g(∗). We may consider the path h(t) where h(0) = ∗ and
h(1) = g(∗). We apply our map f and we have

f
(
h(0)

)
= f

(
h(1)

)
(15.25)

which is a loop! This defines an element of the fundamental group. Now there is a question
whether we may say this element depends on the choice of g. But all paths are homotopic,
by simple connectedness of X.

∗
g(∗)

h: [0, 1]→ X

( )
f(∗) = f

(
g(∗)

)
( )

7→

X X/G
f

We then have a map G→ π1(X/G). We need to prove it is one-to-one, but we proved this:
every point in the quotient may be lifted. This map is surjective. We should prove this map
is injective (if we can lift the homotopy, then definitely g remains the same). We should
prove it preserves multiplication, but we will do this next time.

Lecture 16. Fibrations.

I missed this lecture, but Steenrod’s book [10] is the standard reference for fibre bundles.
So instead, I will review the topological notion of fibre bundles.

In a sense it is a straightforward generalization of what we have: a group G acting
freely on a topological space X. Then we have a surjective continuous map

p : X → X/G. (16.1)
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We call the space X/G the “Base Space”, and note that for any x ∈ X/G we have

p−1{x} ∼= G (16.2)

be a homeomorphism.
How do we generalize this? Well, the first steps is to let the base space B be any

topological space. We have the “Total Space” be a topological space E. A “Fibration”
is then a surjective continuous map

p : E → B (16.3)

with the extra condition that, for any b, b′ ∈ B, we have Fb = p−1{b} and Fb′ = p−1{b′} be
the preimages such that

Fb ∼= Fb′ (16.4)

are homeomorphic.

Example 16.1 (Trivial Fibration). Example number zero is quite simple. Let F and B be
topological spaces, and

E = F ×B (16.5)

be the total space. It’s just the product space. This is a basic fibre bundle; in fact, the fibre
bundle generalizes the notion of a product space. But as a fibration, we call it the “Trivial
Fibration” whenever the fibration is just the product space.

Example 16.2 (Tangent Bundle). Consider a smooth n-dimensional manifold M , at each
x ∈M we may consider the vector space TxM of all tangent vectors with base point x. We
can construct the total space

TM =
⊔
x∈M

TxM (16.6)

which is a fibration. Really? Well, we see that we have a continuous surjective function

p : TM →M (16.7)

which gives the base point of the tangent vector. What’s the fibre? Well,

p−1{x} = TxM ∼= Rn (16.8)

describes the fibre: it is the tangent vector space. The fibre is then just the vector space Rn,
where n = dim(M).

A “Fibre Bundle” is then a fibration (F,E,B, p) which is “Locally Trivial” in the
sense that, U ⊂ B open implies

p−1(U) ∼= U × F (16.9)

Another way to think of it is as pasting together a bunch of direct products.

EXERCISES

xExercise 15. Let X ⊂ R3 be the union of n lines through the origin. Compute π1(R3−X).

xExercise 16. Let X be the quotient space of S2 obtained by identifying the north and
south pole into a single point. Put a cell complex structure on X and use this to compute
π1(X).

xExercise 17. Compute the fundamental group of the space obtained from two tori S1 × S1

by identifying a circle S1 × x0 in one torus with the corresponding cycle S1 × x0 in another
torus.
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Lecture 17.

We introduced a notion of fibration. If we have a map p : E → B which is surjective
p(E) = B, we have fibres

Fb = f−1{b} (17.1)

for b ∈ B. If Fb ∼= Fb′ ∼= F , where F is “some topological space”, then we have a fibration.
The space F is called the typical fibre.

There are very nice fibrations called “Trivial Fibrations” where E = F × B where
all the fibres are canonically homeomorphic.

A mapping of fibrations ϕ : E → E′ is such that such that

ϕ : Fb → F ′ϕ(b) (17.2)

We also demand that, if p : E → B and p′ : E′ → B′, then

p′ ◦ ϕ = p (17.3)

holds.
A “Locally Trivial Fibration” is precisely a fibre bundle. We take a fibration

p : E → B and require for U ⊂ B open that

p−1(U) = U × F. (17.4)

Another way to think of it is as pasted together from direct products. We have a cover
{Uα} of B, we consider Uα × F pasted together, i.e., (Uα ∩ Uβ) × F ⊂ Uα × F and
(Uα ∩ Uβ)× F ⊂ Uβ × F , the intersection is embedded in both. We should have a map that
identifies the overlap

(b, f) ∼
(
b, ϕαβ(b)f

)
(17.5)

where
ϕαβ(b) : F → F (17.6)

which is defined for all b ∈ Uα ∩ Uβ . We can introduce different notation

ϕ̃αβ(b, f) = (b, ϕαβ(b)f). (17.7)

These guys are called the “Transition Functions” which obeys some properties of com-
patibility.

We may consider the case when the fibre is discrete. Then a locally trivial fibration is a
covering. This is a definition. We have p : E → B, consider

p−1(U) =

 disjoint union
of homeomorphic

components

 (17.8)

where U ⊂ B is “small.” But p−1(U) = U × F , but F is a discrete space where every point
is open.

Example 17.1. Let G be a discrete group that acts freely on X. We have the identification
map

π : X → X/G (17.9)

and this is a covering. This is called a “Regular Covering”

Remember we assumed X is simply connected, so by definition it is a regular covering
— but it has one more name: a “Universal Covering”. Every connected covering may be
obtained from the universal one. We will focus exclusively on connected coverings for the
rest of this lecture.
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Why is this universal? If we have a (regular) covering, we may obtain other coverings
in the following way: let

G = π1(X/G) = π1(X1) (17.10)

We have X1 = X/G be connected. We may take any subgroup H ⊂ G which acts freely on
X. Therefore we may repeat the same construction, obtaining a map

X
αH−−→ (X/H)

πH−−→ (X/G). (17.11)

The first remark is that αh, πH both are coverings, moreover αH is a regular covering. We
take some V ⊂ X/G. We have its preimage

π−1(V ) = tUi = tgiU (17.12)

where gi ∈ G. This induces an open covering. When we consider π−1
H (V ) = tUi, we recall

π−1
H (V ) ⊂ π−1(V ) is a proper subset. All connected coverings of X/H may be obtained in

this way.
One more remark. Is this quotient X/H always a regular covering? Not always. But

it is clear if H ⊂ G is a normal subgroup, then π−1
H is a regular covering. Because (G/H)

acts on (X/H). The points of (X/H) are orbits Hx; and if H ⊂ G is normal, and γ ∈ G/H,
then it acts on (X/H) by taking g ∈ γ and applying it to hx. We may represent it as

ghx = hgx (17.13)

so ghg−1 = h′ ∈ H by virtue of H being a normal subgroup.

Theorem 17.2. Connected coverings of a “good” space Y are in one-to-one correspondence
with subgroups of π1(Y ). Connected regular coverings correspond to normal subgroups of
π1(Y ).

A “good” space is one with at least one universal covering, but in reality we need less.
The idea is that it is a maximal covering — so a good space has small closed loops be
contractible. It is not precisely clear where they are contractible. More precisely every point
has a neighborhood such that closed loops are contractible in a bigger neighborhood.

Lecture 18.

Proposition 18.1. Simply connected covering is unique.

The “unique” means that two simply connected coverings are the same. Nothing is said
of their existence!

Proof. Let p : X̃ → X be a simply connected covering. So X is connected. We may declare
any point in X̃ to correspond to the marked point in X, i.e.,

p(∗) = ∗. (18.1)

Now we take x ∈ X̃ so p(x) ∈ X. We will take a path from ∗ to x in X̃,

α : [0, 1]→ X̃ (18.2)

such that α(0) = ∗, α(1) = x. Now this path may be projected to X. Every path is

homotopic in X̃, thus when projected to X they remain homotopic. So we have

x ∈ X̃ 


(
p(x) ∈ X, homotopy class of

paths from ∗ to p(x)

)
(18.3)

If we are given only X, we may construct

X̃ = (z ∈ X,homotopy class of paths from ∗ to z). (18.4)
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But this means that X̃ is basically unique, so there exists a unique simply connected covering.
Moreover this appears to be a construction that always gives something we call a “simply
connected covering”—but this is wrong. It gives a set. We need to prove it is a topological
space, and that it is a covering. Lets suppose a simply connected covering exists. If V 3 ∗ is
a neighborhood, then it is covered by disjoint sets in X̃

(U1 t U2 t . . . ) = p−1V, (18.5)

every map Ui → V is a homeomorphism. But then let us take any closed path in V . It is a
small path, it’s covered by some path α̃ ∈ Ui such that

p(α̃) = α. (18.6)

But this covering path α̃ is contractible in X̃. It follows that α is contractible in X. This
isn’t always true, there is a pathological counter-example.

∗

z z′
V A neighborhood U of a pair (z,path). Let V be a neighborhood of z.

Then U has
(z′,path′) ∈ U (18.7)

where z′ ∈ V . We have

path′ = path ∗ γ (18.8)

where γ : [0, 1]→ V has
γ(0) = z′, γ(1) = z. (18.9)

This gives us a topology, and it is simply connected, etc. What should be required is really
something a little bit stronger:

Requirement: for every point z ∈ X and every neighborhood V of z, there exists a
smaller neighborhood U ⊂ V such that every closed path in U is contractible in V .

On X̃ we can define an action of π1(X, ∗) such that (1) this action is free, (2) X = X̃/π1(X, ∗).
How to prove this?

We lift everything we did in the opposite order. Remember

X̃ = (z ∈ X,path from ∗ to z in X) (18.10)

We see
β : I → X (18.11)

with β(0) = β(1) = ∗, which specifies an element of π1(X). Further, α is a path from ∗ to z.
We concatenate β ∗ α, we changed the path though not the end points. We remain in the
same fibre. Thus it’s an action of π1(X). So it justifies the statement X = X̃/π1(X).

So we’ve shown: a simply connected covering is unique, and it is a regular covering.
But what about other coverings? The simply connected covering is universal. It is easy to
see without formal proofs. Let us take any connected covering of X, denote it by Y . But
it also has a simply connected covering Ỹ of Y . But now the covering of a covering is a
covering. So it is the simply connected covering of X, i.e.,

X̃ = Ỹ . (18.12)

We may therfore say
Y = X̃/π1(Y ) (18.13)

and that’s the end of the story.
We should check the simply connected covering exists. But we may prov ethis. Instead,

we’ll do something different. Namely, look: we take some covering Y and we project

π : Y → X. (18.14)

But from this construction it follows we may construct a map X̃ → Y by definition of X̃. It
is almost obvious this map is a covering.
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EXERCISES

xExercise 18. Describe all connected coverings of Moebius band. Show that all compact
covering spaces are homeomorphic either to Moebius band or to annulus.

xExercise 19. Let us consider a group G of transformations of the plane R2 generated by
transformations (x, y)→ (x, y + 2) and (x, y)→ (x+ 1,−y + 1).

1. Prove that G acts freely on R2.

2. Prove that the quotient space R2/G is homeomorphic to Klein bottle (i.e. it can be be
obtained from two Moebius bands by means of identifying their boundaries).

3. Use this construction to show that there exists a covering of Klein bottle homeomorphic
to a torus.

xExercise 20. One says that a map p : X → Y is a ramified covering of the surface Y if
the map p is a covering of the set Y − F where F is a finite subset of Y (i.e. the map
p : p−1(Y ) → Y is a covering. Let us suppose that p is n-sheeted covering of Y − F (i.e.
every point of Y − F has n preimages) and the ramification points (points of F ) have µ1,
. . . , µk preimages (here k stands for the number of points in F ). Prove the following formula
connecting Euler characteristics of X and Y :

χ(X) = nχ(Y ) +
∑

1≤i≤k

(µi − n) (18.15)

(this is a version of Riemann-Hurwitz formula).
Hint. You can use additivity of Euler characteristic.

xExercise 21. Check the Riemann-Hurwitz formula for the map p : S2 → S2 defined by the
formula p(z) = zn (we consider the sphere as the set of complex numbers with addition of a
point at infinity: S2 = C ∪∞).

xExercise 22. Calculate the Euler characteristic of a surface defined by the equation
w2 = q(z) where q(z) is a polynomial of degree m. (Such a surface is called elliptic if m = 3
or m = 4 and hyperelliptic if m > 4). Here w, z ∈ S2 = C ∪∞.

Hint. Consider the surface as a ramified covering of the sphere. Take into account that
for m = 2n the function w = ±

√
q(z) looks like w = ±zn at infinity and therefore consists of

two separate branches; this means that in the neighborhood of infinity we have two-sheeted
covering. For m = 2n+ 1 this function looks like w = ±zn

√
z, hence we have a ramification

point at infinity.

Lecture 19. Homotopy Groups.

TODO: Write up the notess on homotopy groups from Schwarz’s book [9, Ch. 8].
Iterative construction of
homotopy groups

We will start with a reminder of the fundamental group. We took a space X with a
marked point ∗ ∈ X. We take Ω(X, ∗) to be the space which consists of loops in X that
have base point ∗. We considered the connected components of the space Ω, i.e., π0(Ω, ∗).
We then just

π1(X, ∗) = π0(Ω, ∗). (19.1)

We use topological invariant of Ω to get a topological invariant of X. But we can use
anything we want! We can keep iterating, and take

π1(Ω, ∗) = π2(X, ∗) (19.2)

is a topological invariant of X, we have functoriality. If f : X → Y , then ΩX → ΩY . We
can iterate this construction n-times to get πn, but we will focus on π2.
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Different ConstructionLook, what are the elements of Ω? They are maps of an itnerval to X:

α : I → X (19.3)

which are closed paths, i.e.,
α(0) = α(1) = ∗. (19.4)

We want to consider the fundamental group of Ω. A path of Ω is then of the form ατ (t)
where τ is the parameter of the path in Ω. Perhaps it is better to write

ατ (t) = α(τ, t). (19.5)

We want to have a closed path that starts and ends at

ατ (0) = ατ (1) = ∗, and α0(t) = α1(t) = ∗. (19.6)

We can look at (τ, t) ∈ I2 as a square. So in other words, our path α is a mapping

α : I2 → X (19.7)

such that
α(∂I2) = ∗ (19.8)

it takes the boundary to the marked point. This mapping is called a “Spheroid”. Why is
this name a good one? Well, recall I2/∂I2 ∼= (S2, ∗) is a homeomorphism. So equivalently,
we have it be

α : (S2, ∗)→ (X, ∗) (19.9)

a mapping from the marked 2-sphere to the marked space (X, ∗). Using this language, π2 is
the collection of homotopy classes of spheroids.

Remark 19.1 (“Spheroid” and Nationality). IT appears that only the Russian topologists
use the word “spheroid” in their writing. A cursory google search would reveal that it is a
relatively antiquated or esoteric word, and indeed only Russians employ it.

� � We will abuse language and notation to refer to the mapping and/or the cube as the
“spheroid.”

α β α βSuppose we have two spheroids α and β. We can con-
struct a third spheroid using

γ(τ, t) =

{
α(2τ, t) 0 ≤ τ ≤ 1

2

β(2τ − 1, t) 1
2 ≤ τ ≤ 1

(19.10)

This is doodled to the above right, taking the two spheroids labeled α and β and combines
them into the third as we specified. This is precfisely a reformulation of the definition of π2

in terms of π1.

Theorem 19.2. The group π2(X, ∗) is commutative.

There are two proofs of this fact. One is long and boring. Ours is a sequence of pictures:

α β 7→ α
β

∗
∗

7→ α
β
∗

∗ 7→ α
β
∗

∗
∗

∗ 7→
α
β∗
∗ 7→ αβ

Now, let us introduce the ntoion of a topological group G which is a group object
internal to Top. In other words, it consists of a topological space G equipped with “group
structure”: continuous maps µ : G×G→ G and ι : G→ G. We will prove that

π1

(
Topological

Group

)
∈ Ab (19.11)
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We can define the multipication of paths as one of two ways: (1) concatenation α ∗ β; (2)
γ(t) = α(t)β(t) pointwise using the group’s multiplication.

These are the same up to homotopy. And that is obvious. Why? Lets write down

α′ = α ∗ e (19.12)

where the constant path e(t) = e is the multiplicative identity. Obviously α′ ∼ α homotopic.
Also take

β′ = e ∗ β (19.13)

then we see
α′ ∗ β′ = α′β′ (19.14)

pointwise.
We can consider the opposite group Gop where multiplication is defined as

x ◦op y = x ◦ y (19.15)

But
αβ ∼ βα (19.16)

Thus we deduce commutativity up to homotopy. We want to prove π2 is commutative. What
to do? We apply this statement to Ω. But it is not a group. It has multiplication, and a unit.
But this is up to homotopy! Nevertheless, everything goes through for Ω, so π1(Ω), which is
an H-space (“almost topological group”), is commutative. Thus π2(X) is commutative.

Lecture 20.

Last time we gave a definition of π2, the second homotopy group of a space with a
marked point. We can generalize to πn(X, ∗) by considering

f : In → X (20.1)

and requiring
f(∂In) = {∗}. (20.2)

This guy is called an n-dimensional “Spheroid”. We can define the concatenation of
spheroids

h = f ∗ g (20.3)

by taking the domain and splitting it up (as we did for curves). So

h(t1, . . . , tn) =

{
f(2t1, t2, . . . , tn) 0 ≤ t1 ≤ 1

2

g(2t1 − 1, t2, . . . , tn) 1
2 ≤ t1 ≤ 1.

(20.4)

Here πn(X, ∗) is the set of homotopy classes of spheroids — if we can deform one spheroid
to another while remaining a spheroid throughout deformation.

There is another definition which may be given through induction. We have Ω be the
sapce of paths beginning and ending at ∗. We inductively define πn(X, ∗) = πn−1(Ω, ∗). If
f ∈ πn−1(Ω, ∗), then we see it is

f : In−1 → Ω (20.5)

and therefore we write

fτ (t1, t2, . . . , tn−1) = f(t1, . . . , tn−1, τ)

This is an n-dimensional spheroid. We see this is a correspondence between (n − 1)-
dimensional spheroids in Ω and n-dimensional spheroids in X. We should check concatenation
is preserved. We can take concatenation with any coordinate, so use τ and we’re done.



Lecture 20 45

We can give a third definition. Namely if we write the spheroid as a map

In/∂In → X (20.6)

taking the boundary to the marked point ∗ ∈ X. We may say πn(X, ∗) is the homotopy
group of spheroids; it’s clearer conceptually, but the operation is ambiguous.

The first thing to state is πn is Abelian for n ≥ 2. The second thing is that πn is a
functor. If f : X → Y is a map of topological spaces such that f(∗)∗ then

πn
(
f : X → Y

)
= f∗ : πn(X, ∗)→ πn(Y, ∗) (20.7)

and it has functorial properties

(f ◦ g)∗ = f∗ ◦ g∗, and id∗ = id (20.8)

as desired.

Theorem 20.1. If (X, ∗) ∼ (Y, ∗) homotopy equivalent, then πn(X, ∗) ∼= πn(Y, ∗) is an
isomorphism of groups for all n.

Proof. We have f : X → Y and g : Y → X such that

f ◦ g ∼ idY (20.9)

and
g ◦ f ∼ idX (20.10)

are homotopic. Then we may write g∗ ◦ f∗ = idπn(X) and f∗ ◦ g∗ = idπn(Y ). Thus we may
speak of πn as an invariant.

There is a repetition: everything we did for π1 we do for πn.
Suppose X is connected. Then

πn(X, ∗) ∼= πn(X, ∗̃) (20.11)

is isomorphic, but it is not a canonical isomorphism: there are many. Lets consider the
n = 2 proof, we may draw pictures. Everything is very simple. We have a spheroid

f : I2 → X, f(∂I2) = ∗. (20.12)

f f

f(∂I2) = ∗

We want to create a spheroid which has the property that the
boundary goes to another marked point ∗̃. We take a larger
square, as doodled on the left, and embed our spheroid into it.
The “bonus space” is just concatenation with the trivial spheroid,
mapping everything to the marked point. One could also think

of this as mapping the boundary “thicker”3. This is a bunch of paths connecting ∗ to ∗̃,
which are doodled in light gray. Our extended version of f is constructed in a nonunique
way. This α connects ∗ to ∗̃, lets abuse notation to write

α : πn(X, ∗)→ πn(X, ∗̃). (20.13)

We could consider α−1, or better

β(τ) = α(1− τ) (20.14)

which goes in the opposite direction. So we may use it to construct a map

β : πn(X, ∗̃)→ πn(X, ∗). (20.15)

3I suppose the technical term is “adding a collar” to our boundary region, if one prefers this exotic
terminology.
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Now we may state, at the level of πn, we have α ◦ β = 1 and β ◦ α = 1. Why? Because

α ◦ β ∼
(

trivial
path

)
(20.16a)

homotopic, and

β ◦ α ∼
(

trivial
path

)
(20.16b)

homotopic too.

f ◦ g ∼= ∼=f g f g

We should note that we have
α(f ◦ g) = α(f) ◦ α(g), which we
prove with a series of pictures doo-
dled to the right. These isomor-
phism are quite nontrivial. We’ve
seen for n = 1 they’re nontrivial. In particular we may take the marked points to be equal
∗ = ∗̃. By taking a nontrivial path, we get an isomorphism

α : πn(X, ∗)→ πn(X, ∗). (20.17)

We may say α(f) = α ◦ f ◦ α−1, so this is the case for ∗ = ∗̃, we may write this for any
case. But then α−1 is not very well defined. We’ve shown that π1(X, ∗) acts on πn(X, ∗) by
means of automophisms. So we have

π1(X, ∗)→ Aut
(
πn(X, ∗)

)
(20.18)

Did we prove this? Not really. We proved there exists a map, but we need to prove it is a
morphism. The proof, however, is easy. So what did we prove? We proved if X is connected,
then πn(X, ∗) does not depend on the marked point ∗.

Lets consider the homotopy class

{Sn, X} = {orbits of π1(X, ∗) in πn(X, ∗)} (20.19)

provided X is connected. This is merely a structureless set. The proof of this is very simple.
First there is a natural map

πn(X, ∗)→ {Sn, X}, (20.20)

the only difference is we fix a point in the domain—this map is surjective (that’s obvious).
Because there is a map

f : Sn → X (20.21)

such that ∗ 7→ f(∗) = ∗̃. Is this a spheroid? No. But we may take another path α from
∗ to ∗, so we can consider α(f). We explained how to do this. The remark is α(f) ∼ f
homotopic, as a map of spheres. We should look at the kernel of

πn(X, ∗)→ {Sn, X}. (20.22)

It is clear α(f) ∼ f homotopic as spheroids, or more precisely as a map of spheres.

Lecture 21.

We defined homotopy groups which generalize the fundamental group. We would like
to compute the simplest example. Homotopy groups are Abelian, and Abelian groups are
easy to describe — but hard to compute.

The first thing we will do is calculate the homotopy group of Rn. It is immediately
obvious: the homotopy group is trivial, since Rn is contractible. Alternatively: if we have a
spheroid, then we may contract it.
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What about πk(Sn)? Well, for k < n, we have a spheroid

f : Ik → Sn (21.1)

such that f(∂Ik) is the north pole. Well, if k < n and f is “not too bad”, then it doesn’t
cover the whole sphere. This means there is a point x0 which is not contained in f(Ik). We
recall

Sn − {x0} = Rn (21.2)

and every spheroid is contractible. But what does it mean for f to be “not too bad”? We
should approximate our map by a polynomial, or a Cr map, or a piecewise-linear map; then
this approximation is homotopic to f .

What about πn(Sn)? Well, we have

πn(Sn) = {Sn, Sn}, (21.3)

but why? This is normally not the case! In general we have

{Sk, X} =

(
orbit of

π1(X) in πk(X).

)
(21.4)

For π1(X) Abelian, we see
{S1, X} = π1(X). (21.5)

(Recall how π1(X) acts on πk(X) via inner automorphisms.) So what happens for k > 1?
Well, we see

πn(Sn) = {Sn, Sn} 1:1−−→ Z (21.6)

We even talked about this before: we proved it for n = 1, but for n > 1 it is also true. If
f : Sn → Sn, then f−1(x) is an algebraic number called the “Degree” of f .

What happens for πk(Sn) and k > n? Consider π3(S2), we constructed a map S3 → S2,
the Hopf map and it is not contractible. The explanation for this, recall the preimages for
points were circles. The preimages for two points are two linked circles. One may see this
group is nontrivial. What about in general? This situation is very nontrivial. We have

πk(Sk) ∼= Z (21.7a)

and

π4k−1(S2k) ∼= Z +

(
finite
group

)
(21.7b)

All others are finite!
We will consider a covering p : X̃ → X where X, X̃ are connceted. We would like to

consider the situation with homotopy groups

πk(X̃, ∗) = πk(X, ∗) (21.8)

for k ≥ 2. The proof is as follows: ifwe have a path in X, it may be uniquely lifted to a
path in X̃ — well, not uniquely, but if we lift the starting point then it’s unambiguous.

So we now have a spheroid in X. The trick is to look at a spheroid as a family of paths
in X, then we may lift it to X̃. But this lifts the paths, does it lift the spheroid? Well, the
initiall point of the paths are lifted to the marked point. When we lift f(∂Ik) to the marked
point, then we may lfit the spheroid. In principle, if

f(∂Ik) ⊂ p−1(∗) (21.9)

so we have some freedom in lifting.
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Remember we considered G acting on a simply connected space X̃, we let

X = X̃/G. (21.10)

Assume G acts freely, we proved G = π1(X). We can get every universal covering this way.

We now know πn(X) = πn(X̃) for n ≥ 2. We see therefore that

G ∼= π1(X) (21.11)

acts on πn(X). But we kknow π1(X) acts on πn(X), we merely proved it in a different way.
But this is geometrically obvious. Lets use this for an interesting calculation.

We know the universal covering of S1 is R, so

S1 = R/Z. (21.12)

The action of Z on R is x 7→ x+ n. We know

π1(S) = Z, and πn(S1) = 0 (21.13)

for n ≥ 2. We have {Sn, S1} be trivial, for n ≥ 2.
A more interesting case: we have Z2 act on Sn by x 7→ −x. We see

Sn/Z2 = RPn (21.14)

We know
π1(RPn) = Z2, πk(RPn) ∼= πk(Sn) (21.15)

otherwise. In particular
πn(RPn) ∼= Z (21.16)

Consider {Sn,RPn}, we see deg(idSn) = 1 and

ε : Sn → Sn

x 7→ −x
(21.17)

has deg(ε) = ±1. The conclusion is, for n even, we have

{Sn,RPn} = Z/(n ∼ −n) (21.18)

whereas for n odd we have no identification.

Lecture 22.

Let Σ be a 2-dimensional manifold. Let Σ̃ be the universal cover of Σ. But there are
only two choices for Σ̃: S2 or R2. For simplicity we will suppose that Σ is compact. We
know how to calculate π1(Σ), the only thing we need is the statement that π1(Σ) is finite in
two cases: Σ = S2 or RP2. This is easy looking at the Abelianization of the fundamental
group. In both of these cases, Σ̃ = S2. We have

πk(Σ) = πk(Σ̃) (22.1)

for k ≥ 2. Now let us suppose π1(Σ) is infinite. Then Σ̃ is not compact. Why? Because
when we look at the covering

Σ̃→ Σ

the number of sheets in this covering are the number of elements in π1(Σ), which is infinite.
Over every disc, we have an infinite number of discs, which is definitely noncompact. We
have only one chocie for Σ̃. We see then that

πk(Σ) = πk(R2) = 0 (22.2)
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for k ≥ 2.
We would like to show

πk(X × Y ) ∼= πk(X)× πk(Y ). (22.3)

It’s a one minute proof. If we have a mapping

f : Z → X × Y = {(x, y)} (22.4)

this map means (x, y) = f(z). This means

x = f1(z), and y = f2(z). (22.5)

When we apply this to spheroids, everything follows. When we deform f(z), we deform
these two guys. We have, e.g., an n-torus be

Tn = (S1)n (22.6)

so πk(Tn) ∼= πk(S1)n.

22.1 Relative Homotopy Groups

We will have a pair of topological spaces X, A (so A ⊂ X), and consider ∗ ∈ A ⊂ X.
For simplicity, A and X are connected. We will define a “Relative Homotopy Group”
πn(X,A, ∗) or sometimes πn(X,A). We will neglect something in X, namely, we neglect A

— this is the notion of “relative”.
Recall we defined πn by means of spheroids

(Sn, ∗)→ (X, ∗).

The homotopy group πn(X, ∗) is then the homotopy classes of spheroids. This is nice but
incomplete. We need to define an operation. We did this by considering a spheroid as a
map on a cube, generalizing concatenation.

Lets consider something similar for relative homotopy groups. We introduce “Relative
Spheroids” (D̄n, Sn−1, ∗) where

Sn−1 = ∂D̄n, (22.7)

and relative spheroid is a map

(D̄n, Sn−1, ∗)→ (X,A, ∗). (22.8)

This means we have a map
f : D̄n → X (22.9)

such that
f : ∂D̄n → A (22.10)

but f(∗) = ∗. Such a map is a relative spheroid.
The relative homotopy group πn(X,A, ∗) is a set of homotopy classes of relative spheroids.

It’s exactly the same for ordinary homotopy group, the only difference is we use relative
spheroids. We will discuss the operation later on.

One relation we’d like to note is we have a map

πn(X,A, ∗)→ πn−1(A, ∗) (22.11)

from the relative homotopy group to the full homotopy group. Why? For a trivial reason
that a relative spheroid

f : (D̄n, Sn−1, ∗)→ (X,A, ∗) (22.12)

is really a full spheroid on A. Thus f : (Sn−1, ∗)→ (A, ∗) is an (n− 1)-spheroid.
A different formulation of the relative homotopy group. Recall we considered the space

Ω of all closed loops starting and ending at ∗. We consider

πn(X, ∗) = πn−1(Ω, ∗)
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A X

Now what about the relative groups? We have A ⊂ X, consider
all paths that are closed modulo A. That is to say

Ω(A) = {f : I → X | f(0) = ∗, f(1) ∈ A} (22.13)

This sort of path is doodled on the right, where it begins at the
marked point and ends anywhere inside the gray region. We
may consider its homotopy groups. Thus we may define πn(X,A, ∗) = πn−1(Ω(A), ∗) where
∗(t) = ∗ is the stationary path. Okay, this is a definition. We see this is a group. Also,
for n ≥ 3 we see πn(X,A, ∗) is Abelian. The only problem is that this is not a very good
definition.

Let us decode this definition. Consider πn−1

(
Ω(A), ∗

)
. What is this? We define this in

terms of spheroids as a map of a cube

f : In−1 → Ω(A) (22.14)

which sends ∂In−1 → ∗. What is Ω(A)? It consists of paths. Our function f(t1, . . . , tn−1)
itself is a path, so really

f = f(t1, . . . , tn−1, τ) ∈ X. (22.15)

What ar ethe conditions on f? First of all, the condition is

fτ : ∂In−1 → ∗(τ), (22.16)

so
f(∂In−1, τ) = ∗(τ). (22.17)

Another is that, for τ = 0, we have

f(. . . , 0) = ∗ (22.18)

be our marked point, whereas for τ = 1 we require

f(. . . , 1) ∈ A (22.19)

and that’s it! τ

t1

A

∗∗

∗

We will try to reconcile everything. Consider f : In → X.
For n = 2, we will have a square and when τ = 1 we go to A.
This is doodled on the right. When t = 0, 1 we go to ∗ and when
τ = 0 we also go to ∗.

This needs to be rewritten
for clarityA For the n = 3 case, we have the top face go to A (it is shaded grey). This

is really what is defined by Hatcher as a relative spheroid. But this is already
defined. We should prove it is the same. Here we have the map of a ball,
which sends its boundary to A. But here we have some extra stuff, namely,
the rest of the boundary. We identify it witha pouint. So really, this is

equvialent to a ball with a marked point. Consider(
In, In−1 × {1}, (∂In−1 × I) ∪ (In−1 × {0})

)
7→ (D̄n, Sn−1, ∗) (22.20)

since they both are mapped to (X,A, ∗). So this identifies the notion of a relative spheroid
with Hatcher’s notion of a spheroid. Observe

(∂In−1 × I) ∪ (In−1 × {0})

is a contractible set. When we contract, the upperface is mapped to Sn−1 the whole boundary.
So our new sense of relative spheroid agrees with the relative spheroid in the old sense.
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Lecture 23.

We gave a definition of homotopy groups πk(X, ∗) in various ways. Using spheroids

f : (Sk, ∗)→ (X, ∗) (23.1)

such that f(∗) = ∗, or as
f : Ik → (X, ∗) (23.2)

such that f(∂Ik) = ∗. We introduced the notion of relative homotopy groups on (X,A, ∗).
We can have relative spheroids

f : D̄n → X (23.3)

such that
f(Sn−1) ⊆ A, and f(∗) = ∗. (23.4)

This is very nice but it doesn’t give a group structure. Therefore one can consider instead of
maps of a ball, well, maps of a cube. That would be

f : In → X (23.5)

such that
f(In−1) ⊂ A, and f(∂In − In−1) = ∗. (23.6)

This is an equivalent picture, but we see how to form a binary operation now. This definition
may now be formulated as πn−1

(
Ω(A)

)
.

The first thing to say is this definition is functorial. What does this mean? Well, we
have

α : (X,A, ∗)→ (Y,B, ∗) (23.7)

such that
α : X → Y and α(A) ⊂ B (23.8)

and α(∗) = ∗. We then have “by functoriality” a map

πn
(
α : (X,A, ∗)→ (Y,B, ∗)

)
= α∗ : πn(X,A, ∗)→ πn(Y,B, ∗). (23.9)

Moreover α∗ is a morphism. We have the functoriality property that

(α ◦ β)∗ = α∗ ◦ β∗ and (id)∗ = id∗ . (23.10)

These are the functorial properties.

23.1 Exact Homotopy Sequence of a Pair

We see that a spherodi in A is definitely a spheroid in X. In other words, functoriality
acts on this inclusion

i : A ↪→ X (23.11)

and gives us a morphism
i∗ : πn(A)→ πn(X). (23.12)

Note that we do abuse notation slightly, we should write something like i∗,n to indicate we
have πn(i), i.e., it depends on the n ∈ N0.

Next we have absolute homotopy groups, we had absolute spheroids. Now we may
consider relative spheroids and relative homotopy groups

πn(A, ∗) i∗−→ πn(X, ∗)→ πn(X,A, ∗). (23.13)

Why do we have this? Well, any absolute spheroid is-a relative spheroid. Why? Because the
simple reason is ∗ ∈ A. So a spheroid is just a relative spheroid “ending at ∗”.
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We have one more map, which we already described

πn(X,A, ∗)→ πn−1(A, ∗). (23.14)

This comes from the fact a relative spheroid

f : In → X (23.15)

can be restricted to In−1, but f(In−1) ⊂ A. This is a spheroid in A! So we induce this
morphism.

But we also have
i∗ : πn−1(A, ∗)→ πn−1(X, ∗). (23.16)

Why? Well, we saw this earlier using the inclusion and applying the functor πn−1. So we
have a sequence. We have at the end of this

· · · → π1(A, ∗)→ π1(X, ∗)→ π1(X,A, ∗)→ π0(A, ∗)→ π0(X, ∗) (23.17)

where the underlined terms are not really defined. So what to do? Simple: define them!
We really have a problem here: we have no group for π0(X), but we have a set. The stuff
underlined in Eq (23.17) are not groups, but they are sets. If we consider π0(X), it may
be considered as S0 → X which maps marked point to marked point. Please note that S0

consists of two points, one of them is marked. So what is

f : (S0, ∗)→ (X, ∗)? (23.18)

It is a map of one point, so naively we would expect π0(X, ∗) to be in one-to-one correspon-
dence with the points of X, right? Wrong: π0 is the homotopy classes of such mappings,
and two points are homotopic if they are on the same components. So really,

π0(X, ∗) =

(
components

of X

)
(23.19)

A deformation of elements of Hom
(
(S0, ∗), (X, ∗)

)
is a path. So we have really π0(X, ∗) be

homotopy classes of these thngs, i.e., of the components of X. It is a set.
A relative spheroid

f : I → (X,A, ∗) (23.20)

is a path
γ : [0, 1]→ X (23.21)

such that
γ(0) = ∗, and γ(1) ∈ A. (23.22)

So a spheroid is determined where it ends. What is important is we have a sequence of
groups that ends with a sequence of groups that ends with a sequence of sets.

Theorem 23.1. This sequence

· · · → πn(A, ∗)→ πn(X, ∗)→ πn(X,A, ∗)→ πn−1(A, ∗)→ . . . (23.23)

is exact.

Definition 23.2. Consider a sequence of groups

. . .
dn−−→ An

dn−1−−−→ An−1
dn−2−−−→ An−2 → . . . (23.24)

it is said to be “Exact” iff Im(dk) = Ker(dk−1).
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Observe as a consequence in an exact sequence

Im(dk−1 ◦ dk) = 0. (23.25)

Can we say Im(dk) = Ker(dk−1)? Well, yes, but the statement, for any k,

Im(dk) ⊆ Ker(dk−1) (23.26)

is sufficient to say we have an exact sequence, and

Im(dk) ⊇ Ker(dk−1) (23.27)

is necessary. We could write
Im(dk) = d−1

k−1(0) (23.28)

for exactness conditions.

Remark 23.3. The definition of exactness remains meaningful if we wok with sets with
marked points. We simply write ∗ for our marked point, and d−1

k−1(∗) = Im(dk), etc.

Sketch of Proof. The full proof requires checking 6 terms showing an equality of sets. TODO: write in the proof

∗
If we have Sn−1 → A homotopic to the trivial path, then it may be extended

to a union of nonintersecting Sn−1, i.e., to Dn. Consider Sn−1 × I, then on the
upper part of the cylinder (if it is homotopic to 0) is ∗, we get what is doodled
on the left.

Consider πn−1(A, ∗) → πn−1(X, ∗). We can extend the sphere to a ball.
But that means we have πn(X,A, ∗) → πn−1(A, ∗), because this extension to a ball is a
relative spheroid. So we have the kernel included in the image.

The best thing to do is to go home and think about it yourselves: there are some things
so simple, it cannot be explained.

Lecture 24.

We will see how to apply our theorem. Recall we have a space X, a subset A ⊂ X,
and a point ∗ ∈ A. We considered homotopy groups πn(A, ∗) but every spheroid of A is a
spheroid in X. We thus get a morphism

πn(A, ∗)→ πn(X, ∗). (24.1)

But we can consider an absolute spheroid in X as a relative spheroid, thus we get a morphism

πn(X, ∗)→ πn−1(X,A, ∗). (24.2)

Thus we get our exact sequence

· · · → πn(A, ∗)→ πn(X, ∗)→ πn−1(X,A, ∗)→ πn−1(A, ∗)→ . . . (24.3)

We have to check that

πn(A, ∗)→ πn(X, ∗)→ πn−1(X,A, ∗) (24.4)

is exact. Lets first introduce some notation:

i∗ : πn(A, ∗)→ πn(X, ∗) (24.5a)

j∗ : πn(X, ∗)→ πn(X,A, ∗) (24.5b)

∂ : πn(X,A, ∗)→ πn−1(A) (24.5c)
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Then we have
∂ ◦ j∗ = 0, j∗ ◦ i∗ = 0, i∗ ◦ ∂ = 0. (24.6)

So we have
Im(i∗) ⊆ Ker(j∗), Im(j∗) ⊆ Ker(∂), Im(∂) ⊆ Ker(i∗). (24.7)

In other words, this sequence is a “Complex”. Last time we proved that

Im(i∗) ⊇ Ker(j∗), Im(j∗) ⊇ Ker(∂), Im(∂) ⊇ Ker(i∗). (24.8)

which imply that these are equal and our sequence is exact.
Consider X = D̄n, A = Sn−1, and ∗ ∈ A. We can write down an exact sequence:

πk(Sn−1)→ πk(D̄n)→ πk(D̄n, Sn−1)→ πk−1(Sn−1)→ . . . (24.9)

We definitely know that D̄n is contractible, which means they have trivial homotopy groups.
We obtain

πk(Sn−1)→ 0→ πk(D̄n, Sn−1)→ πk−1(Sn−1)→ . . . (24.10)

which implies an isomorphism. Important: 0→ A ↪→ B and
A � B → 0 for exact
sequences

If 0 → A ↪→ B where we have A ↪→ B injective, then
Im(A ↪→ B) ⊂ B. Similarly, we have A� B → 0 imply the kernel is contained in the image
and, being sloppy with notation, have B ⊂ A. Thus 0→ A→ B → 0 implies A ∼= B.

So what? Well, this implies

πk(D̄n, Sn−1) ∼= πk−1(Sn−1) (24.11)

That is the end of the story.

24.1 Homotopy Groups of Fibrations

We have a notion of fibration p : E → B surjective, and

p−1{b} = Fb ∼= F (24.12)

for any b ∈ B, where F is the fibre. A “Locally Trivial Fibration” is one which locally
behaves as a direct product. So for some neighborhood U ⊂ B , we have

p−1(U) ∼= U × F. (24.13)

We may consider a fibre
p−1{b} = Fb ⊂ E (24.14)

we may compute the relative homotopy groups of this pair: πk(E,Fb, ∗) where ∗ ∈ Fb. So

p(∗) = b = ∗ (24.15)

we mark a point in the base
b ∈ B. (24.16)

Lets clarify notation a bit: We have b = ∗ in base B, and in Fb the marked point denoted ∗.
We have F be the fibre over the marked point. Immediately relative homotopy groups of E
relative to F is mapped to the absolute homotopy group of B:

p∗ : πn(E,F, ∗)→ πn(B, ∗). (24.17)

We have a fibration over the base.

Theorem 24.1. We have this morphism p∗ be an isomorphism if the fibration is locally
trivial.
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There is a notion of a cell fibrationdefined in this way. Using this theorem for complexes,
if

πn(X,A) ∼= πn(B) (24.18)

then it’s locally trivial, etc. So in other words, our cell complex X corresponds to E, and
the subcomplex A correspond to the “fibre”. When we use this analogy on our cell complex,
we get a cell fibration. The only thing we need is the ability to lift from a spheroid in B to
a relative spheroid. We will elaborate later, now we will focus on examples.

If (E,F ) are a pair, we may consider the exact sequence

· · · → πn(F )→ πn(E)→ πn(E,F )→ πn−1(F )→ . . . . (24.19)

Topological results are invariant with respect to letters used for variables. But recall our
theorem, that is

πn(E,F ) ∼= πn(B). (24.20)

So we can write

· · · → πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ . . . (24.21)

we have an “Exact Homotopy Sequence of Fibrations”.This permits me to consider,
to calculate homotopy groups and everyt fibration gives some information. So first of all, we
need examples of fibrations. We have one! The trivial fibration, but that is a triviality.

But we have also the Hopf fibration, where we have E = S3, B = S2 and F = S1. For
a more general picture, we had the complex projective space which is defined in terms of
(n+ 1) complex numbers defined up to a factor (z0 : · · · : zn). It is a sphere of dimension
S2n+1, when we factorize by an action of S1 we get

S2n+1/S1 = CPn. (24.22)

We may consider a fibration S2n+1 → CPn with the fibre S1. In the case n = 1, we have
CP1 = S2. It is clear this fibration is locally trivial. We see we get

· · · → πk(S1)→ πk(S2n+1)→ πk(CPn)→ πk−1(S1)→ . . . (24.23)

describing the exact homotopy sequence.
Remember that we already mentioned

πk(space) = πk

(
covering

space

)
(24.24)

for k ≥ 2. We thus have
πk(B) ∼= πk(E) (24.25)

since E is the covering space of the base B. We see F is discrete, so

πk(F ) = 0 (24.26)

for k ≥ 1. This situation we explained, every third term of our sequence vanishes. So

πk(S1) = 0 (24.27)

for k ≥ 2, and
π1(S1) ∼= Z. (24.28)

We may write down this sequence, we are in this wonderful situation that lets us say

πk(S2n+1) ∼= πk(CPn). (24.29)
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But this is not always true. Why? Because

π1(S1) 6= 0. (24.30)

We should consider this portion of the exact sequence(
π2(S1) = 0

)
→ π2(S2n+1)→ π2(CPn)→

(
π1(S1) ∼= Z

)
→
(
π1(S2n+1) = 0

)
(24.31)

But
π2(S2n+1) = 0 (24.32)

which gives us
0→ π2(CPn)→

(
π1(S1) ∼= Z

)
→ 0 (24.33)

We get
0→ π2(CPn)→ Z→ 0 (24.34)

or in other words
π2(CPn) ∼= Z, (24.35)

and for k > 2 we have
πk(CPn) ∼= πk(S2n+1) (24.36)

as desired.

Lecture 25.

So, last time we discussed the “Exact Homotopy Sequence Fibration”

πk(F )
i∗−→ πk(E)

p∗−→ πk(B)
∂−→ πk−1(F ) (25.1)

where p : E → B forms the fibration, and

ϕ : Ik → B (25.2a)

is a spheroid,
ψ : Ik → E (25.2b)

is a spheroid such that
p ◦ ψ = ϕ (25.3)

holds.
Consider the Hopf fibration

S3 S1

−−→ S2. (25.4)

The sequence we had was

πk(S1)→ πk(S3)→ πk(S2)→ πk−1(S1). (25.5)

Notice for k = 2 we get

π2(S1) = 0→ π2(S3)→ π2(S2)→ Z ∼= π1(S1)→ 0 = π1(S3). (25.6)

We should remember that
π2(S2) ∼= Z (25.7)

thus we obtain
0→ π2(S3)→ Z→ Z→ 0. (25.8)

But we also have
πk(Sn) = 0 for k < n. (25.9)
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Thus we obtain
0→ π2(S3) = 0→ Z→ Z→ 0. (25.10)

For k > 2 we find πk(S1) = 0, thus obtaining a sequence

πk(S1) = 0→ πk(S3)→ πk(S2)→ 0 = πk−1(S1). (25.11)

This implies
πk(S3) ∼= πk(S2) (25.12)

for all k ≥ 3.
We would like to extract some interesting sequences. First we will introduce a “Section”

of a fibre bundle p : E → B. So we take a single point in every fibre Fb, and we do this
continuously. In othr words, it is a mapping

q : B → E (25.13)

such that
q(b) ∈ Fb ∀b ∈ B. (25.14)

Thus
(p ◦ q)(b) = b (25.15)

or simply p ◦ q = idB .

Box 2. Sections in Fibre Bundles

The intuition should really be guided by thinking of vector fields in R3. Here, our fibre is
F ∼= R3 the vector space and the base is B = R3 the topological space. What do we do? Well,
it’s quite simple: we have a continuous mapping

R3 → E ∼= R3 × R3

p 7→ (p, ~v )
(25.16)

where p ∈ R3 is a point in our topological space, and ~v ∈ R3 is a vector in our vector space.
The ordered pair (p, ~v) is a tangent vector with base point p and vector part ~v.

� � Note that as a vector bundle, the space E ∼= R3 × R3 is a trivial vector bundle. This enables
us to write guys living in E as an ordered pair. Also note, this is not the tangent bundle! It

resembles it an awful lot, but I am being lazy and referring to something similar but different.

What if we want to assign something else to each point “continuously”? For example:
assign to each point a differential operator? Or a group element? How do we handle these
situations? The solution is obvious: work with a topological gadget (e.g., a topological group).
What does this mean? Well, it means the gadget has topological structure. This enables us to
continuously assign data to each point.

The problem is not every bundle has sections. If the bundle is “twisted” too much (i.e.,
not “trivial” enough), then the topology “obstructs” global sections existing. What’s a global
section? Global Section defined on

every U ⊂ B; local section
defined on some U

It is a section defined on B, not just a neighborhood U ⊂ B. Compare this to a local
section, which is defined on some neighborhood U ⊂ B.

The trivial bundle p : B × F → B has sections, of course. We just take f = f(b)
continuous. Then

q : B → B × F
b 7→

(
b, f(b)

) (25.17)

We have a section map B → F .
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The Mobius band is a fibration if we take the dashed line, doodled to
the right. We get a section, where the fibres are doodled in grey. What’s
the base space B for the Mobius band? Well, it’s a circle. What’s the
fibre? Well, Fb ∼= I it’s homeomorphic to the unit interval. So locally, i.e. for a sufficiently
small neighborhood U ⊂ B, we have p−1(U) ∼= U × I.

Lets consider a surface, say in R3 ⊇ Σ. Lets specifically consider the following picture:
our surface is smooth, so we may speak meaningfully of tangent vectors. If we set B = Σ,
then E = TΣ is our “Tangent Bundle”. For our surface Σ, a tangent vector has two
components; thus our tangent space TxΣ = p−1(x) is two-dimensional. What does this
mean? Well, TxΣ ∼= R2 for all x ∈ Σ. Our tangent bundle is a locally trivial fibration, so at
some U ⊂ Σ “small neighborhood”, we have p−1U ∼= U × R2.

Do we have a section for TΣ? Well, there is a trivial one: q(b) = 0 for any b ∈ B. But
generally, a section for a tangent bundle is a “Tangent Vector Field”. Can we have a
nontrivial tangent vector field? Well, just get rid of zero in the fibre:

E′ = E − (B × {0})

and consider the fibration
p′ : E′ → B. (25.18)

This is really the same guy as p : E → B with the demand of nontriviality. A section would
be a mapping

q : B → (E −B × {0}). (25.19)

Lets note that the fibre we are working with looks like

F ′b
∼= R2 − {0}. (25.20)

So what? Well,
F ′b
∼= S1 (25.21)

describes the fibre’s topology. The million-dollar question: does a section exist? How to
prove that the section exists?

Lets first discuss some very trivial statements. If we have a fibration p : E → B and a
section on our fibration, it is a map q : B → E. Observe: these are maps. So what? Well,
functoriality induces morphisms

q∗ : πn(B)→ πn(E) (25.22a)

and
p∗ : πn(E)→ πn(B). (25.22b)

We use functoriality and obtain

p ◦ q = idB =⇒ p∗ ◦ q∗ = idπn(B), (25.23)

which implies p∗ is surjective. Recall our exact homotopy sequence for a fibration has

πk(E)
p∗−→ πk(B)

∂−→ πk−1(F ) (25.24)

So p∗ surjective gives us
Im(p∗) = πk(B) (25.25)

and exactness gives us
Im(p∗) = Ker(∂). (25.26)

Together, these imply
πk(B) = Ker(∂) (25.27)
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provided a section exists. Lets reiterate this:

If Ker(∂) = πk(B), then a section exists. (25.28)

For example, we have our Hopf fibration, does it have a section? Well, π2(S3)→ π2(S2) is
not surjective, so it is impossible for a section to exist.

Lets introduce the notion of a “Stiefel Manifold” Vn,k. Vn,k consists of k × n
matrices whose columns are
orthonormal column vectors
in Rn

Here

Vn,k = {(e1, . . . , ek)} (25.29)

where ei is a column vector living in Rn. Morever, we demand orthonormality

〈ei, ej〉 = δij . (25.30)

We may give a different definition: we require e1, . . . , ek be linearly independent. Lets
denote this different definition by Ṽn,k. Ṽn,k consists of k × n

matrices whose columns are
linearly independent column
vectors in Rn

We see that Vn,k ⊂ Ṽn,k. But this embedding is
really a homotopy equivalence. How can we say this? Well, the Grahm-Schmidt procedure
gives us a mapping

Ṽn,k → Vn,k (25.31)

which is a homotopy equivalence.
We have a special case

Vn,1 = Sn−1 (25.32)

and
Ṽn,1 = Rn − {0}. (25.33)

There are other fascinating examples,

Vn,2 = {normalized tangent vectors to Sn−1}, (25.34)

but we also have a fibration
V3,2 → S2 (25.35a)

constructed by
(e1, e2) 7→ e1. (25.35b)

The fibre is S1. Writing down the exact sequence for this fibration is very easy, but it is a
Hopf fibration if we replace S3 with V3,2.

First V3,2 = SO(3) where O(n) is the group of orthogonal matrices, and SO(n) is the
subgroup with unit determinant. Why is this obvious? First, we have

V3,3 = O(3) (25.36)

trivially, since each column is orthonormal. We have, given (e1, e2) ∈ V3,2, the third vector
e3 be orthogonal to e1 and e2. But we have two options ±e3 are both orthogonal to e1 and
e2! We get a mapping

V3,2 →V3,3

(e1, e2) 7→X = (e1, e2, se3)
(25.37)

where s = ±1 is such that det(X) = 1. This gives us a one-to-one correspondence between
V3,2 and SO(3). But that’s a triviality. More generally, we have

Vn,n−1 = SO(n) (25.38)

but
V3,2
∼= RP2. (25.39)



Lecture 26 60

Then π1(V3,2) ∼= Z2. We see our exact homotopy sequence is

π2(V3,2)→ π2(S2) ∼= Z→ Z2 → 0 (25.40)

but it then follows that
π2(V3,2)→ Z (25.41)

is not surjective. Thus this fibration has no section. There exists no nonzero tangent vector
field to the sphere. The moral: Don’t bring hedehog to barber shop.

Lecture 26. Principal Fibrations.

26.1 Aside on Principal Fibrations

Some particular cases of fibrations are called “Principal Fibrations”. Let G be a
topological group (usually a Lie group; for notes on Lie groups, see Nelson [8]). Lets consider
a space E where G acts freely. What does it mean? Well, for any nontrivial g ∈ G there are
no fixed points, i.e.,

gx 6= x provided g 6= e. (26.1)

The obvious exception is the identity transformation has fixed points, but that’s a triviality.
Although this is unsatisfactory, but sufficient for us. Given such an action, every orbit Ox is
in one-to-one correspondence with G. We have

g 7→ xg (26.2)

using the right action for notational convenience. So

G→ Ox (26.3)

is bijective and continuous. This is a topological equivalence! Moreover, if G is compact,
then every continuous one-to-one mapping has a continuous inverse. Then every orbit is
topologically equivalent to G. We have a map E → E/G which is a fibration.

Theorem 26.1. A principal fibration has a section if and only if it is a trivial fibration.

We should additionally assume that G is compact, and B = E/G is at least locally
compact. Lets suppose we have a section

q : B → E, (26.4)

consider the mapping
f : B ×G→ E (26.5a)

defined by
f(b, g) = q(b)g (26.5b)

which is continuous. So F is one-to-one and continuous. If everything is compact, it’s a
homeomorphism. It’s a condition of triviality for a principal bundle. Also note(

Local Triviality
of Bundle

)
=⇒

(
Existence of

Local Sections

)
. (26.6)

We will do the following trick: include existence of lcoal sections into the definition of a free
action.

There is an important case, namely a subgroup H ⊂ G of a topological group. Itacts
on the left or on the right, so lets consider the action

(g, h) 7→ gh (26.7)
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for some g ∈ G and h ∈ H. What is the space of orbits? It is G/H, the space of cosets. We
have

G
H−→ G/H (26.8)

and it is a principal fibre bundle. We assume compactness everywhere (otherwise, we need
to worry about the existence of sections, etc.).

Suppose G acts transitively on B. Lets take a point b ∈ B, then we may map G→ B
by considering

g 7→ ϕg(b) (26.9)

where
ϕ : G→ Aut(B). (26.10)

But this is precisely the picture we had before. If we denote Stab(b) = H, then B corresponds
to G/H.

26.2 Returning to Stiefel Manifolds

Now we would like to consider two different cases: the real case, and the complex case.
But we don’t really want to talk about quaternionic case, but everything we say may be
repeated for quaternions. So what are the Stiefel Manifold Vn,k? It is precisely k column
vectors in Rn which are orthonormal. But

Vn,n(R) = O(n) (26.11)

may be considered as an identity. For the complex case, we see we get

Vn,n(C) = U(n) (26.12)

the unitary group! The quaternionic case, we also have something of this kind

Vn,n(H) = Sp(n) (26.13)

the Symplectic group.
We had explained

Vn,n−1(R) = SO(n), (26.14)

and some consideration gives the fact

Vn,n−1(C) = SU(n). (26.15)

In particular, what we would like to say is that

V2,1(C) = SU(2). (26.16)

So this is a pair of complex numbers x, y ∈ C such that

|x|2 + |y|2 = 1, (26.17)

which is a sphere in C2 ∼= R4. So SU(2) ∼= S3.
Now it is easy to check that

SO(3) ∼= SU(2)/Z2. (26.18)

This may be done in many different ways. One is to consider a 3-dimensional representation
of SU(2). Or we may consider an action of SU(2) on Hermitian matrices. We won’t go into
detail here. By the way, this fact implies that

SO(3) ∼= RP3 (26.19)
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as topological spaces, and we used this before. Homotopy groups care about the topological
structure of spaces, so we have

πk
(
SO(3)

) ∼= πk
(
SU(2)

)
(26.20)

for any k ∈ N.
After these remarks, we want to construct some fibrations. We do this in two ways.

One way take Vn,k and maps
(e1, . . . , ek) 7→ e1. (26.21)

Note we could have mapped it to ek, it doesn’t really matter. This gives us a mapping

Vn,k → Vn,1. (26.22)

What’s the fibre? Well, we fix one vector e1 and we have (k − 1) vectors orthogonal to it.
Thus we have Vn−1,k−1 be the fibre. So we have for each k a fibration of this kind. Observe

Vn,n → Vn,1 (26.23)

has fibre Vn−1,n−1. But we know these guys! It’s the fibration

O(n)→ Sn−1 (26.24)

with fibre O(n − 1), in the R case. (For the C case we have U(n) → S2n−1 with fibre
U(n − 1).) We see that O(n) acts on Rn which preserves the scalar product and length
(likewise describes the action of U(n) on Cn). So it follows every sphere is a quotient

O(n)/O(n− 1) = Sn−1 (26.25)

in the real case, and
U(n)/U(n− 1) = S2n−1 (26.26)

for the complex case.
We can get information about the connection of U(n−1), U(n) if we know the homotopy

groups for S2n−1. We know for small k that

πk(S2n−1) = 0. (26.27)

Thus
πk
(
U(n− 1)

) ∼= πk
(
U(n)

)
. (26.28)

We have a similar situation for the orthogonal group, for k < n.

EXERCISES

xExercise 23. Prove that every graph (one-dimensional cell complex) has trivial homotopy
groups in dimensions > 1.

Hint. Every simply connected graph is contractible. (This is true also for infinite graphs,
but to solve the problem it is sufficient to check this for finite graphs.)

xExercise 24. Calculate relative homotopy groups πk(Sn, S1, ) where k ≤ n, n ≥ 3. Here
S1 stand for a circle embedded into n-dimensional sphere Sn.

xExercise 25. Let us consider a letter Φ as three-dimensional object (in other words we
consider Φ as a small neighborhood of a graph in R3). One can say also that we consider
three-dimensional body Φ bounded by a sphere with handles ∂Φ. Calculate relative homotopy
groups πn(Φ, ∂Φ, ) where ∈ ∂Φ.
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Lecture 27.

Consider a topological group G and a closed subgroup H ⊂ G, we are assuming that
G is a compact Lie group for simplicity. Then we may say that H acts on G by means of
multiplication — specifically, by means of multiplication on the right. That is

ϕh(g) = gh (27.1)

for g ∈ G and h ∈ H. We have cosets gH by considering the orbits of such maps. We also
have a fibration where the fibres are H and

p : G→ G/H (27.2)

is the fibration. So G acts on G/H but on the left. If we take any γ ∈ G and γ(gH) = (γg)H.
This action is transitive. Ifwe start with H and consider

γ(eH) = γH (27.3)

we get every orbit, therefore it is transitive. If G acts transitively on X, then X may be
identified with the space of orbits X = G/H where H is a stable subgroup. We may write
down the exact homotopy sequnce for this fibration.

Example 27.1. We may consider U(n)/U(n− 1) = S2n−1 and this is simply because U(n)
acts on Cn by definition. The orbits of this action are spheres. The stable subgroup is
SU(n). We may also write

SU(n)/SU(n− 1) = S2n−1 (27.4)

which is the same stuff.
But we may repeat the same consideration on Rn, where the orthogonal group replaces

the unitary group. We have that

O(n)/O(n− 1) = Sn−1. (27.5)

We may also consider instead

SO(n)/SO(n− 1) = Sn−1. (27.6)

There is another consideration using Hn quaternionic space. The analog of unitary or
orthogonal group, here, is the symplectic group Sp(n). We obtain

Sp(n)/Sp(n− 1) = S4n−1 (27.7)

by similar reasoning as the complex case.

Recall that for the exact sequence for fibrations we have

· · · → πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ . . . (27.8)

but usually one of these spaces is contractible, so its homotopy group is trivial for all n.
Thus we get an isomorphism between homotopy groups.

We thus deduce that, for “small k”,

πk
(
U(n)

) ∼= πk
(
U(n− 1)

)
(27.9)

This means we may consider “Stable Homotopy Groups” which are denoted by πk(U),
πk(O), and πk(Sp). This corresponds to πk

(
U(n)

)
, etc., for “large enough n”. We can

compute how large n has to be. There then exists a wonderful statement:

Bott Periodicity Theorem. We have πk(U) ∼= πk+2(U), πk(O) ∼= πk+8(O), and πk(Sp) ∼=
πk+4(O).
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So we should know a small amount of these guys. First of all, all even guys

π2k(U) = 0. (27.10a)

We see π0(U) is the set of connected components, and thus the unitary group is connected.
We also can see

π2k(U) ∼= Z (27.10b)

We see SU(n) ⊂ U(n) is a subgroup. Moreover, if u ∈ U(n), v ∈ SU(n), we have

u = λv (27.11)

for some λ ∈ C. So this quotient

U(n)/SU(n) = S1 (27.12)

as topological spaces, so we have
π1

(
SU(n)

)
= 0. (27.13)

Thus we deduce that π1

(
U(n)

) ∼= Z and we may use Bott periodicity.
For the orthogonal group, we must compute π0, . . . , π7. We see that

π0(O) ∼= Z2 (27.14)

since there are two connected components, by Euler’s theorem4. We also observe

π1

(
SO(3)

) ∼= π1

(
RP3

) ∼= Z2 (27.15)

so
π1(O) ∼= Z2. (27.16)

Now we see that
π2(O) = 0 (27.17)

is trivial. More interestingly, for any Lie group G we have

π2(G) = 0. (27.18)

But we have
π3(O) ∼= Z, (27.19)

which is a general fact for every simple noncommutative Lie group G we have π3(G) ∼= Z.
We may now write down a table

π0(O) π1(O) π2(O) π3(O) π4(O) π5(O) π6(O) π7(O)
Z2 Z2 0 Z 0 0 0 Z

Only π0 depends on the components, all other homotopy groups are computed on the
component connected to the identity element.

We may compute π0, π1, π2, π3 for all simple Lie groups U, O, Sp. Every Lie group
is homotopy equivalent to a compact Lie group. So really, look, first of all both U(n) and
Sp(n) are connected but O(n) has two components. We know

π3

(
SU(2)

)
= π3(S3) = Z (27.20)

and this gives us
π3

(
SO(3)

)
= Z. (27.21)

4Euler’s theorem states: if X is an orthogonal matrix, then det(X) = ±1. This can be seen by
det(XTX) = det(I) = 1 and det(XT) = det(X). Thus det(X)2 = 1, and there are only two real numbers
that do this.
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We observe
SO(4) ∼=

(
SU(2)× SU(2)

)
/Z2. (27.22)

But it follows that
π3

(
SO(4)

) ∼= Z⊕ Z. (27.23)

We have Sp(1) ∼= SU(2), so
π3

(
Sp(1)

) ∼= Z. (27.24)

We can now apply stability to deduce

π2

(
SU(n)

)
= 0 (27.25)

and
π3

(
SU(n)

) ∼= Z (27.26)

for n ≥ 2. We see we may compute

SU(3)/SU(2) ∼= S5 (27.27)

We have
SO(6) ∼= SU(4), (27.28)

so we now know the homotopy group for SO(6). We see

SO(6)/SO(5) ∼= S5 (27.29)

and that enables us to deduce the homotopy groups for SO(5).

EXERCISES

xExercise 26. Let us consider a locally trivial fibration with total space E, base B = S2 and
fiber S1. Express the homotopy groups of E in terms of homotopy groups of the sphere S2.

Hint. The data you have do not specify completely the homotopy groups of E. You
should describe all possible answers.

xExercise 27. A topological group G acts freely on contractible space E. Express the
homotopy groups of the space of orbits BG = E/G in terms of homotopy groups of G. (The
space BG is called classifying space of G.)

xExercise 28. The group U(k) × U(k) is embedded into group U(2k) as a subgroup con-
sisting of block-diagonal matrices with two k × k blocks. Calculate the homotopy groups
πn(U(2k)/U(k)×U(k)) for n < 2k.

Hint. You can use the fact that the natural homomorphism πn(U(k)) → πn(U(m))
where k < m is an isomorphism for n < 2k. The groups πn

(
U(k)

)
for n < 2k are called

stable homotopy groups; they are equal to Z for odd n and to 0 for even n

Lecture 28.

ϕ(x)

ψ(x)

B

Now we will prove there exists a homotopy exact sequence
of a fibration. Really we are proving the homotopy lifting
property for locally trivial fibations. Lets suppose we have
p : E → B for us the essential caase is a fibration where

p−1{b} ∼ F ;

and if we have
ψ : X → E

where X is some arbitrary (but fixed) topological space, then we can compose to get a map

p ◦ ψ : X → B.
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Lets write ϕ = p ◦ ψ. We may say that ψ lies above ϕ, or ψ is a “Lifting” of ϕ. Not every
map can be lifted, in particular the map

idB : B → B (28.1)

this lifting map is prcisely what is called a “Section”.
For a locally trivial fibration, every homotopy may be lifted provided the cell complex

X is “good enough” (i.e., polyhedral). Precisely this means that if we have a map

ϕ : X → B (28.2)

and suppose we have lifted it to get a map

ψ : X → E, (28.3)

then
ϕ = p ◦ ψ. (28.4)

But now we know that ψ does not always exist. Assume we have a homotopy

ϕt : X → B (28.5)

with the property
ϕ0 = ϕ, (28.6)

then the statement is: if we start with a locally trivial fibration, there exists a homotopy ψt
such that ψ0 = ψ and p ◦ ψt = ϕt.

We will prove this by induction (in some sense). We will prove something stronger,
namely this lifting property for a pair. We assume X is a cell complex, A ⊂ X is a
subcomplex. Or better, a polyhedron and subpolyhedron. This is the homotopy lifting
property for pairs. We have the additional assumption that homotopy is lifted on A.

Theorem 28.1. Let (A,X) be a cellular pair, ψ : X → A There exists a homotopy ψt such
that ψ0 = ψ, p ◦ ψt = ϕt, and the lifted homotopy has the given value on A.

In other words, we may begin on A, then extend it to X. We will now prove a particular
case.

TODO: write up the proof.
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