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1 Differentiable Structures
We want to consider a so-called “differentiable structure” that we can equip a topological

space with. The intuition already should be that this is a mapping of some sort, where for
our topological space M we have a mapping

U 7→ Diff(U) (1.1)

where U ⊆M is open. As we are working with a topological space, we demand consistancy
on overlaps, so if U ∩ V 6= ∅ and U, V ⊆M are open, then we would want

Diff(U ∩ V ) = Diff(U |U∩V ) = Diff(V |U∩V ) (1.2)

that is to say, if we restrict our attention of Diff(U) on the overlap Diff(U |U∩V ), it should
be equal to the differentiable structure on the overlap.

But what exactly is this “differentiable structure” we are assigning to each open subset
of M? Already it sounds like a presheaf or sheaf, so intuitively we can think of it as
a generalization of a vector space. Instead of assigning a vector at each point of M , it
assigns something “smooth” to each point in such a way that varies “nicely” as we vary the
base-point. We will use something that we know very well: an algebra of smooth functions.

So basically, given some topological space M , we have

Diff : U 7→ C∞(U). (1.3)

That is, for each open subset U of M , we assign an algebra of C∞ functions (i.e. infinitely
differentiable functions) which includes the unit function 1(x) = 1. Notation Change! Diff(U)

changed to C∞(U)

N.B: we will change
notation to use instead of Diff(U) the mathematically clearer C∞(U).

Is it enough to assign “any old” algebra of smooth functions to open subsets U ⊆M?
Well, we should make some restrictions. Namely, we want it to be “consistent on overlaps”.
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So let U, V ⊆ M are open, U ∩ V 6= ∅, and f ∈ C∞(U). We will denote the restriction
mapping as

rU∩V,U : U → U ∩ V (1.4)

we then demand
f ◦ rU∩V,U ∈ C∞(U ∩ V ) (1.5)

that f restricted to the overlap lie in the differentiable structure assigned to the overlap.
This is the naive way to demand consistency on overlaps.

So we have a “differentiable structure” be an assignment of “sufficiently nice” unital
algebras of smooth functions to open subsets of a topological space, but is that all? Well, for
starters, how do we define a derivative? It requires a choice of some coordinates! This is a
bit of a problem, so we need to equip each open subset U ⊆M some extra information which
permits some notion of coordinates. Locally each open subset U ⊆M is “the same” as Rn

(for some fixed n ∈ N called the “Dimension of M” Notion of dimension). What does this rigorously translate
to? How can we rigorously translate the “sameness” of two topological spaces? Well, we use
a mapping. From the category theoretic perspective, it should be an isomorphism. But for
topological spaces that is a homeomorphism (a continuous map with a continuous inverse

— so we can translate open subsets of the domain into open subsets of the codomain and
vice-versa). So we equip each open subset U ⊆M with a homeomorphism

ϕ : U → Rn (1.6)

specified by components
ϕ : y 7→ (x1(y), x2(y), . . . , xn(y)) (1.7)

where y ∈ U , x1, . . . , xn ∈ C∞(U). These functions xi ∈ C∞(U) are called the “Coordinate
Functions”.

So we just introduced some extra structure, some special functions defined for each open
subset U ⊆M called the coordinate functions on U , which allows us to solve the problem of
specifying differentiability! Why? Well, observe that the coordinate function is invertible, so

ϕ−1 : Rn → U (1.8)

can be composed with a function with domain U . Why is this important? Well, if

f : U → R, (1.9)

then the composition
f ◦ ϕ−1 : Rn → R (1.10)

can be differentiable. That is, we can use the familiar notion of differentiability from ordinary
calculus! We just work “locally” in Rn when differentiating.

So to reiterate our specification of a differentiable structure, it is a mapping from
a topological space M to a unital associative algebra of smooth C∞ functions on M .
This mapping is “sufficiently nice” on overlaps of open subsets of M . Further it has
preferred functions which are the “coordinate functions,” whose raison d’être is to permit
differentiation in the obvious way. This is precisely sufficient information to have some
notion of “smoothness” in M .

Remark 1.1. The pair (M,Diff) is often referred to as a “Smooth Manifold”. However, we
will abuse language and simply refer to M as the smooth manifold with the understanding
that it really is equipped with a smooth structure.

2 Tangent Vectors and Differential Expressions
We will present a purely (or mostly) algebraic formulation of tangent vectors and

differential expressions. It is completely foreign to the unsuspecting observer, something
phenomenally alien. We will begin very slowly by analyzing the components involved very
slowly.
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2.1 Germs

Let M be a C∞ manifold of dimension m. We want to consider smooth functions on
the open subsets of M . What can be said of the local properties of these functions? That
is, how can we tell if two functions f, g ∈ C∞(U) (for some U ⊆M) have the same “local
properties”? This is the problem we wish to consider as motivation for studying germs.

Namely, there is a problem we haven’t really considered: what if two distinct functions
agree everywhere on some open subset U ⊆M? That is, if f, g : U → R and

f(x) = g(x) ∀x ∈ U, (2.1)

are the functions “different” in C∞(U)? Working within some coordinate system, we could
Taylor expand and find they have identical Taylor series within U . So they have locally the
same properties.

Well, in the obvious way they are “equivalent.” That is, we have an equivalence relation
for all f, g ∈ C∞(U) specified by

f ∼ g ⇐⇒ f(x) = g(x) ∀x ∈ U. (2.2)

The distinct functions determined by their distinct values are specified by equivalence classes
of C∞(U). That is, if f ∼ g on U , then we can form a collection of functions that are
equivalent to f . They have the same value as f on U , so without loss of generality we may
intuitively think of them as “the same.” We specify such equivalence classes by

[f ]x = {g ∈ C∞(U)| g ∼ f} (2.3)

where we are working in a neighborhood U of x (an open subset which contains x ∈ U ⊆M).
The equivalence class of a given function in a neighborhood of x ∈M share all local properties
(e.g. continuity, differentiability, etc.).

So to summarize, we were concerned about local properties of functions. We want to
study the local properties, but the first maneuver to do so is to consider the equivalence
classes of functions. That is to say, we consider “equivalent functions” on the domain U ⊆M
by finding equivalence classes of functions. And now for something quite dramatic: we can
study all local properties of a function by studying its equivalence class! This should be a
complete surprise, there has yet been motivation as to why this could even be considered!

Definition 2.1. Let M be a smooth manifold, let x ∈M be a point, then “Germs of C∞

Functions at x” consist of equivalence classes given by the relation described by Eq (2.2).

So a germ is just an alias for an equivalence class [f ]x. Each germ corresponds to a
different equivalence class. Notation for Germs at x: DxWe will use the notation that Dx is the germs at x.

Now, it should be noted that we can induce a differentiable structure on the germs in
“the obvious way.” That is, germs are working with functions in C∞(U), so if we simply work
with the differentiable structure C∞(U) for each “germ representative” (the f for the germ
[f ]x) we get for free a differentiable structure. This is the induced differentiable structure.
This induced structure is quite dramatic, it converts germs at x into an associative unital
algebra! Moreover that makes it a vector space.

2.2 Tangent Space From Germs

Recall that we have, for any vector space V over a field F, a so-called “dual” vector
space V ∗ which consists of “covectors”. That is, mappings from V to F. So if ω ∈ V ∗, then
we know that

ω : V → F (2.4)

is a “linear mapping.” More or less, for finite dimensional vector spaces, V ∗ is the “row-vector”
space, and acts on V by matrix multiplication.
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Figure 1: Functions in different local coordinates.

We just introduced the notion of germs at a point x ∈M for some smooth manifold M .
It turned out to be a vector space (strong still, an associative unital algebra). The natural
question is: what is the structure of its dual space?

Lets try to deduce its structure from what little we know about dual spaces and Dx.
We know that Dx is a vector space over R, so it would logically follow that its dual space D∗x

Notation: dual space of Dx

is denoted D∗x

would “eat in” elements of Dx and “spit out” real numbers. So these gadgets map, at least
ethically, functions to numbers. It is straightforward and possible to generalize the codomain
of these gadgets from R to C complex numbers. If v ∈ D∗x, then we want to consider all
such v which satisfy

v(fg) = v(f) · g(x) + f(x) · v(g) (2.5)

which should make the reader think of the product rule for derivatives!
However, note that derivatives are mappings of the form

∂ : C∞(R)→ C∞(R) (2.6)

which map functions to functions. Compare this with the covectors D∗x of the form

v : C∞(U)→ R (2.7)

which map differentiable functions to numbers “somehow.”

x Exercise 1. [M10 ] Prove that the subset of elements of D∗x which satisfy the property
(2.5) form a linear subspace of D∗x.

The reader, upon proving exercise 1, should realize that we are working with a vector
space. We will denote this vector space by TxM . Tangent Vector Space TxMWe will dub this space the “Tangent
Space of M at x” This is another alias, we have qualitatively analysed its elements which
we will call (appropriately enough) “Tangent Vectors at x”.

This surprise is probably more than unwelcome, as there is no logical reason why anyone
in their rightmind would ever consider this. However, it does have advantages. For one
thing, we have a purely algebraic formulation of tangent vectors. It allows for generalization
to other settings.

If we consider an example to solidify our understanding of this notion of tangent vectors,
we should consult figure 1. We have a smooth manifold M , and some open subset U ⊆M .
We have some chart ϕ : U → Ũ ⊆ Rn. This is local coordinates describing our open subset
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U ⊆M . We have a function f : U → R be described “locally” within “local coordinates” as
f̃ : Ũ → R. That is

f = f̃ ◦ ϕ (2.8)

or equivalently, the diagram described by figure 1 is a commutative diagram. We want to
consider a maps

f = f̃ ◦ ϕ 7→

(
∂f̃

∂x̃j

)∣∣∣∣∣
x̃j=xj(x)

(2.9)

induces a map from Dx → C as we are evaluating the derivative at the point x. It’s a map
C∞(U)→ C. We see that this induces a map on the germs Dx at x to C. These mappings
obey the product rule, which is precisely the property of particular interest with tangent
vectors. It follows that

∂

∂x̃j

∣∣∣∣
x̃j=xj(x)

=
∂

∂xj
(2.10)

form a basis of TxM .

2.3 Generalizations, Differential Expressions

We want to generalize the notion of a tangent vector. This is a long and involved process
that may seem roundabout and needlessly complicated, but it provides a nice generalization
of the concept. We will first study the set of functions with roots at x0.

We first want to consider the element 1x ∈ D∗x by

1x(f) = f(x) ∀f ∈ Dx. (2.11)

We see 1x is real and linearly independent of TxM .

Exercise 2. [HM15 ] Prove that 1x is real and linearly independent of TxM .

However, observe that if we have an element v ∈ D∗x to belong to the complex linear span of
1x and TxM , it is necessary and sufficient that v(f1f2) = 0 for all f1, f2 ∈ Dx which vanish
at x.

x Exercise 3. [HM20 ] Why?

N.B.: this is what leads us to a natural generalization of the notion of a tangent vector.
We will introduce notation for the collection of functions with a zero at x, that is to

say the germs f ∈ Dx such that f(x) = 0.

Notation. Let Note: Jx is the set of all
germs which vanish at the
point x

Jx = {f | f ∈ Dx, f(x) = 0} (2.12)

be the collection of germs which vanish at the point x.

x Exercise 4. [M10 ] Prove that Jx is an ideal in Dx.

Exercise 5. [10 ] Show that any f ∈ Jx0
is of the form (x − x0)rg(x) for some function

g ∈ Dx0
and positive integer r ∈ N.

Now, let us review what we have just done. We have considered the germs which vanish
at a given point x0. Collectively these germs form a set Jx0

⊆ Dx0
. These germs form an

ideal (exercise 4). Moreover, they are of the form (in some local coordinates)

f(x) = (x− x0)rg(x) (2.13)

where r is a positive integer called the “multiplicity” of x0, g ∈ Dx0
, and f ∈ Jx0

. We can
introduce notation to specify the multiplicity of the root, namely Notation: Jp

x are germs with
zeros at x with multiplicity p

Jp
x0

= {f1 · · · fp | f1, . . . , fp ∈ Jp
x0
} (2.14)

for an integer p ≥ 1. This is another way of saying that the multiplicity of the root x0 is at
least p.

Exercise 6. [03 ] Prove that Jp
x0

is an ideal in Dx0
for any p ∈ N.
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Now, so far, the keen observer will note we have just been discussing functions which
vanish at x0. So far no attempt to generalize tangent vectors has been made. The critical
property of tangent vectors that deserves generalization is, if v ∈ TxM and f, g ∈ Dx,

v(fg) = v(f)g(x) + f(x)v(g) (2.15)

but observe now if we restrict our attention to f, g ∈ Jx we get

v(fg) = v(f)g(x) + f(x)v(g) = 0 + 0 = 0. (2.16)

This is precisely the property we use as grounds for generalization.

Definition 2.2. Let r ≥ 0 be an integer. A “Differential Expression of Order ≤ r”
consists of

1. an element v ∈ D∗x

such that

1. for each f ∈ Jr+1
x , v(f) = 0.

Now why is this a good generalization? Well, we see by the notion of a differential
expression of order r satisfies this very property by the product rule. In fact, we have

dr

dxr

[
(x− x0)r+1g(x)

]
= (r + 1)!(x− x0)g(x) +O([x− x0]2) (2.17)

which vanishes at x0. So in other words,

dr

dxr
f(x)

∣∣∣∣
x=x0

= 0 ∀f ∈ Jr+1
x0

(2.18)

is precisely the property that we generalize.

x Exercise 7. [M12 ] Show that the collection of differential expressions of order ≤ r form a
linear subspace of D∗x.

So to review, we generalize the notion of derivatives by simply generalizing the product
rule. This notion that v ∈ D∗x is a differential expression if

v(f) = 0 (2.19)

for all f ∈ Jr+1
x is more general than (i.e. extends beyond) the basic notion of a derivative

in usual calculus.
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3 Solution to Exercises

Exercise 1. [M10 ] We see that we can simply write any two v, w which satisfy the
product rule into a linear combination

(c1v + c2w)f = c1v(f) + c2w(f). (3.1)

We can then deduce that this linear combination also satisfies the product rule

(c1v + c2w)(fg) = c1v(fg) + c2w(fg)
= c1 [v(f)g(x) + f(x)v(g)] + c2 [w(f)g(x) + f(x)w(g)]
= [(c1v + c2w)(f)]g(x) + f(x)[(c1v + c2w)(g)]

(3.3)

since each term on the right hand side obeys the product rule. This is sufficient to show
that a linear combination of elements of D∗x (which obey the product rule) also obeys the
product rule. It follows that this subset of elements obeying the product rule is a subspace
of D∗x as a vector space.

Exercise 2. [HM15 ] We see that f(x) ∈ R, so it follows that 1x is real. We need to show
that it is linearly independent of TxM . Well, if 1x ∈ TxM , i.e. if it is linearly dependent of
TxM , then it would obey the property that

1x(fg) = 1x(f)g(x) + f(x)1x(g)

but we see by definition that this is

1x(fg) = f(x)g(x).

If we set these two equal we see that

1x(f)g(x) + f(x)1x(g) = f(x)g(x)

if and only if
2f(x)g(x) = f(x)g(x)

or equivalently
f(x)g(x) = 0

for all f, g ∈ Dx. As this is not true, we have a contradiction, and thus 1x 6∈ TxM .

Exercise 3. [HM20 ] Consider any f1, f2 ∈ Dx. Let u ∈ TxM , and write

v = c1u + c21x (3.5)

where c1, c2 ∈ C. We see by direct computation

v(f1f2) = c1u(f1)f2(x) + c1f1(x)u(f2) + c2f1(x)f2(x) (3.7)

which we can rewrite as

v(f1f2) = [c1u(f2) + c2f2(x)] f1(x) + c1u(f1)f2(x) (3.9)

which vanishes iff f1(x) = f2(x) = 0 or c1 = c2 = 0.

Exercise 4. [M10 ] We see that for any g ∈ Dx and f ∈ Jx that

(fg)(x) = f(x)g(x) = 0 · g(x) = 0 (3.11)

so fg ∈ Jx for any f ∈ Jx and g ∈ Dx. Thus by definition Jx is an ideal.
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Exercise 5. [10 ] It is obvious. By using the induced differentiable structure, we can
Taylor expand

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + · · · (3.13)

and find when f (r)(x0) 6= 0. We can factorize then set

f(x) = (x− x0)r
(
f (r)(x0) + · · ·

)
= (x− x0)rg(x) (3.15)

where we just define g(x) as the parenthetic term.

Exercise 5. (Alternate answer) It is obvious immediately from the fundamental theorem
of algebra that it must be of this form, if we work with C or if we embed R into C.

Exercise 6. [03 ] We see that by the exact same reasoning as for exercise 4 that Jp
x0

is an
ideal in Dx0 .

Exercise 7. [M12 ] We see that if u, v are both differential expressions of order ≤ r, and
if c1, c2 ∈ R are constants, then

(c1u + c2v)(f) = c1u(f) + c2v(f) = 0 (3.17)

for all f ∈ Jr+1
x . Thus the linear combination is also a differential expression of order ≤ r,

and thus the collection of all such expressions form a linear subspace of D∗x.
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