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Abstract

We introduce in a pedagogical manner how to compute probability amplitudes from
Feynman diagrams, starting with φ4 model. We introduce the notion of renormalization
in this model at the one-loop level. Then we review the Dirac equation, and introduce
QED. We then perform several example calculations in QED. The appendices gives a
survey of Gamma matrices and use of Feynman diagrams in computing decay rates.

1 Feynman Rules in a Nutshell with a Toy Model
We will work in a toy model1 with massive spinless particles (so we won’t have to worry

about spin). This is the easiest nontrivial example of the use of Feynman diagrams. The
basic ritual of Feynman diagrams is outlined thus:

1. (Notation) Label the incoming and outgoing four-momenta p1, p2, . . ., pn. Label the
internal momenta q1, q2, . . .. Put an arrow on each line, keeping track of the “positive”
direction (antiparticles move “backward” in time).

2. (Coupling Constant) At each vertex, write a factor of

−ig

where g is called the “coupling constant”; it specifies the strength of the interaction.
In our toy model, g will have dimensions of momentum, but in the real world it is
dimensionless.

3. (Propagator) For each internal line, write a factor

i

q2j −m2
jc

2

where qj is the four-momentum of the line (q2j = qµj qjµ; i.e. j is just a label keeping
track of which internal line we are dealing with) and mj is the mass of the particle the
line describes. (Note that for virtual particles, we don’t have the E2 − ~p · ~p = m2c2

relation that’s for external legs only!)

4. (Conservation of Momentum) For each vertex, write a delta function of the form

(2π)4δ(4)(k1 + k2 + k3)

where the k’s are the three four-momenta coming into the vertex (if the arrow leads
outward, then k is minus the four-momentum of that line). This factor imposes
conservation of energy and momentum at each vertex, since the delta function is zero
unless the sum of the incoming momenta equals the sum of the outgoing momenta.

∗This is a page from https://pqnelson.github.io/notebk/
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1It is commonly referred to as the φ4 model in the literature.
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5. (Integration over Internal Momenta) For each internal line, write down a factor

1

(2π)4
d4qj

and integrate over all internal momenta.

6. (Cancel the Delta Function) The result will include a delta function

(2π)4δ(4)(p1 + p2 + · · · − pn)

enforcing overall conservation of energy and momentum. Erase this factor, and what
remains is iM that is −i times the contribution to the amplitude from this process.

What we do with these rules is we form an integrand by multiplying everything together,
so at the end it should look something like this:

iM “=”

(
coupling
constants

)∫ (
propagators

)( delta
functions

)
d

(
internal

lines

)
(1.1)

1.1 Example

We will consider the process A + A → B + B, which is represented by the following
Feynman diagram (note that the x axis is the spatial dimension, the y axis is the time
dimension):

Step One: We drew it careful about notation (note the internal momentum line q and the
external lines pj).

Step Two: We have to worry about the vertices, at each one we have to award a term
of

−ig
So here is the Feynman diagram with the vertices enlarged in red:

We see that there are two vertices, one where A emits C and becomes B:
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and the other where A receives C and turns into B:

By our rules, this means we get two factors of

−ig.

That is to say, our integrand is thus
(−ig)2 (1.2)

and we will add even more to it!
Step Three: (Let mC be the mass of a C particle.) We also need a propagator for the

internal line; we have below the Feynman diagram with the internal line in red:

This means we have a factor of

i

q2 −m2
Cc

2
.

We multiply this into our integrand which becomes

(−ig)2
i

q2 −m2
Cc

2
. (1.3)

Step Four: Now conservation of momentum demands two delta functions; we see that
the momentum has to be conserved at the vertices, so we have two diagrams in color this
time. At one vertex, we have the input momentum (the red line be) equal to the sum of the
output momentum (blue lines):

This means we have the conservation of momentum:

p1 = p3 + q. (1.4)
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This corresponds to the delta function of

(2π)4δ(4)(p1 − p3 − q)

(i.e. the left vertex has momentum conserved). We multiply this into the integrand, which
becomes

(2π)4(−ig)2
i

q2 −m2
Cc

2
δ(4)(p1 − p3 − q). (1.5)

We have another vertex too, which we have the “input momenta lines” in red summed to
have the same momentum as the “output momenta lines” in blue:

This corresponds to the conservation of momentum

p2 + q = p4 ⇒ p2 + q − p4 = 0 (1.6)

and this corresponds to a delta function of

(2π)4δ(4)(p2 + q − p4)

(i.e. the right vertex has momentum conserved). The integrand becomes

(2π)8(−ig)2
i

q2 −m2
Cc

2
δ(4)(p1 − p3 − q)δ(4)(p2 + q − p4). (1.7)

Step Five: We integrate over the internal lines, luckily we only have one! We have
one integration thus one term

1

(2π)4
d4q.

Combining rules 1 through 5 gives us the final expression

− i(2π)4g2
∫

1

q2 −m2
Cc

2
δ(4)(p1 − p3 − q)δ(4)(p2 + q − p4). (1.8)

The second delta function serves to pick out the value of everything else at the point
q = p4 − p2, so we have

− ig2 1

(p4 − p2)2 −m2
Cc

2
(2π)4δ(4)(p1 + p2 − p3 − p4). (1.9)

And we have one last delta function which tells us that we conserved the overall energy and
momentum. We erase it by rule 6 and we get the amplitude for this particular process to be

M =
g2

(p4 − p2)2 −m2
Cc

2
. (1.10)

This particular process is called a “tree diagram” because we do not have any internal
loops. Lets consider such an example next.



1 Feynman Rules in a Nutshell with a Toy Model 5

1.2 A Slightly More Complicated Example

This example will teach you that any idiot can complicate a simple scheme, consider
the following diagram:

Step One: We drew it carefully and made special care of the notation used.
Step Two: We need to take note of how many vertices we have, so we have them

enlarged in red to see how many:

we have 4 vertex terms, that is we have

(−ig)4

in the integrand so far.
Step Three: We need to take care of the internal lines now, so we will see which lines

those are exactly:

Since we are being pedagogical, we will go through one by one and indicate which line
we are dealing with and what we evaluate it to be. We will begin in any old arbitrary manner
we please with this particular example, it won’t be that way in general! We will first
consider:
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We evaluate this to be the propagator described by

i

q21 −m2
Cc

2

so we multiply it into the integrand. The integrand is then

(−ig)4
i

q21 −m2
Cc

2
. (1.11)

We continue on and we see the term given by the internal line in red

This corresponds to the propagator described by

i

q22 −m2
Ac

2
.

We multiply this into our integrand now and we get

(−ig)4
i

q21 −m2
Cc

2

i

q22 −m2
Ac

2
= −g4 1

q21 −m2
Cc

2

1

q22 −m2
Ac

2
. (1.12)

Similarly we can do likewise for the other part of the loop in red:

This corresponds to the propagator

i

q23 −m2
Bc

2

and we just multiply it into the integrand, which becomes

− g4 1

q21 −m2
Cc

2

1

q22 −m2
Ac

2

i

q23 −m2
Bc

2
. (1.13)

We have one last internal line left! We highlight it in red:
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This corresponds to the propagator

i

q24 −m2
Cc

2

and we multiply it into the integrand, which becomes

−g4 1

q21 −m2
Cc

2

1

q22 −m2
Ac

2

i

q23 −m2
Bc

2

i

q24 −m2
Cc

2
= g4

1

q21 −m2
Cc

2

1

q22 −m2
Ac

2

1

q23 −m2
Bc

2

1

q24 −m2
Cc

2
.

(1.14)
Step Four: We need to enfore the conservation of momentum, so what do we do?

We simply go back to our graph and go one vertex at a time and enforce conservation of
momentum. At the first vertex, the input momentum is in red and the output momentum
is in blue:

So we want to have momentum here conserved, i.e.

p1 = p3 + q1 (1.15)

so we multiply the integrand by the term

(2π)4δ(4)(p1 − p3 − q1).

Our integrand, which is ever expanding, is then

g4
1

q21 −m2
Cc

2

1

q22 −m2
Ac

2

1

q23 −m2
Bc

2

1

q24 −m2
Cc

2
(2π)4δ(4)(p1 − p3 − q1). (1.16)

There are three other vertices which we must impose conservation laws on, so we will
move right along to the next vertex; again the input momentum is in red, and the output
momentum is in blue:
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This corresponds to a conservation of momentum of

q1 ≈ q2 + q3 (1.17)

which corresponds to the dirac delta function term of

(2π)4δ(4)(q1 − q2 − q3).

Multiplying this into our integrand, we get

(2π)8g4
1

q21 −m2
Cc

2

1

q22 −m2
Ac

2

1

q23 −m2
Bc

2

1

q24 −m2
Cc

2
δ(4)(p1 − p3 − q1)δ(4)(q1 − q2 − q3).

(1.18)
Two vertices down, two to go! We simply move right along to find the next conservation
of momentum to be at the next vertex. The input momentums are in red, and the output
momentum is in blue:

This corresponds to the conservation

q2 + q3 ≈ q4 (1.19)

which means we have a delta function of the form

(2π)4δ(4)(q2 + q3 − q4).

Our integrand becomes

(2π)12g4
1

q21 −m2
Cc

2

1

q22 −m2
Ac

2

1

q23 −m2
Bc

2

1

q24 −m2
Cc

2
δ(4)(p1−p3−q1)δ(4)(q1−q2−q3)δ(4)(q2+q3−q4).

(1.20)
〈As we can see, this is getting really really messy! God help us when we try to feebly evaluate this

beast!〉 Thank god only one vertex left! This is the last term to add prior to integration. The
input momentums are in red and the output momentum is in blue:

This has the conservation of
q4 + p2 ≈ p4 (1.21)

which takes the delta form of
(2π)4δ(4)(q4 + p2 − p4) (1.22)
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and our integrand finally becomes

(2π)16g4
δ(4)(p1 − p3 − q1)

q21 −m2
Cc

2

δ(4)(q1 − q2 − q3)

q22 −m2
Ac

2

δ(4)(q2 + q3 − q4)

q23 −m2
Bc

2

δ(4)(q4 + p2 − p4)

q24 −m2
Cc

2
(1.23)

At this point, if I were a professor, I would say “This is trivial...bye!” But I am no professor!
Step Five: We then integrate over the internal lines. This is the fun part, like when

the dentist says he needs to give you a root canal and he’s all outta Novocaine! We integrate
over q1, q2, q3, q4. We notice that the factors of 2π completely cancel out which is nice, so
all we have is

g4
∫
δ(4)(p1 − p3 − q1)

q21 −m2
Cc

2

δ(4)(q1 − q2 − q3)

q22 −m2
Ac

2

δ(4)(q2 + q3 − q4)

q23 −m2
Bc

2

δ(4)(q4 + p2 − p4)

q24 −m2
Cc

2
d4q1d

4q2d
4q3d

4q4.

(1.24)
We will take this slow and step by step, we see that in the first delta function we have the
replacement of q1 by p1 − p3 which is nice! We make this move:

g4

(p1 − p3)2 −m2
Cc

2

∫
δ(4)(p1 − p3 − q2 − q3)

q22 −m2
Ac

2

δ(4)(q2 + q3 − q4)

q23 −m2
Bc

2

δ(4)(q4 + p2 − p4)

q24 −m2
Cc

2
d4q2d

4q3d
4q4.

(1.25)
Similarly, we find the our last delta function allows us to make the switcheroo of q4 for
p2 − p4, so we make it so:

g4

(p1 − p3)2 −m2
Cc

2

1

(p2 − p4)2 −m2
Cc

2

∫
δ(4)(p1 − p3 − q2 − q3)

q22 −m2
Ac

2

δ(4)(q2 + q3 − p2 − p4)

q23 −m2
Bc

2
d4q2d

4q3.

(1.26)
The term δ(4)(p1 − p3 − q2 − q3) tells us q2 is replaced by p1 − p3 − q3 so our last delta
function (after monkeying around with integration) becomes

δ(4)(p1 + p2 − p3 − p4).

We are left with

g4

(p1 − p3)2 −m2
Cc

2

1

(p2 − p4)2 −m2
Cc

2

×
∫

1

(p1 − p3 − q3)2 −m2
Ac

2

δ(4)(p1 − p3 + p2 − p4)

q23 −m2
Bc

2
d4q3. (1.27)

So we can skip ahead to rule 6 and assert: our contribution to the probability amplitude
from this diagram is

M = i
( g

2π

)4 1

[(p1 − p3)2 −m2
Cc

2][(p2 − p4)2 −m2
Cc

2]

×
∫

1

[(p1 − p3 − q3)2 −m2
Ac

2][q23 −m2
Bc

2]
d4q3. (1.28)

2 Renormalization
You can go ahead and try to calculate out the integral in Eq (1.28) but I will tell you

right now that it’s not easy or finite. One could write the four-dimensional volume element
as

d4q = q3dqdΩ (2.1)

(where dΩ is the angular part; just like in two dimensions we have rdrdθ and in three
dimensions r2dr sin θdθdφ). At large q the integrand is essentially 1/q4, so the q integral
has the form ∫ ∞

0

1

q4
q3dq = ln(q)

∣∣∣q=∞
q=0

=∞. (2.2)
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This is terrible! So what to do? The field of Renormalization

consists of (1) regularization,
and (2) radiative corrections.

The first step is to regularize the integral using some sort
of “cut off” procedure that renders the integral finite without losing Lorentz invariance. So
we introduce a factor into the Eq (1.28) of

−M2c2

q2 −M2c2
(2.3)

under the integral sign. The cutoff mass M is assumed to be “very large” and will be taken
to infinity when we are done (also observe that our fudge factor goes to 1 as M → ∞).
We can now calculate out the integral and seperate it into two terms: a finite term (one
independent of M), and one (in this case) that is the logarithm of M (which goes to ∞ as
M →∞).

At this point something rather magical happens: all the divergent, M -dependent terms
appear in the final answer in the fomr of additions to the masses and the coupling constant.
This means (if taken seriously) that the physical masses and couplings are not the m’s
and g’s that appeared in the original Feynman rules but rather the “renormalized” ones,
containing extra factors:

mphysical = m+ δm, gphysical = g + δg. (2.4)

The fact that δm and δg are infinite (in the limit of M →∞) is disturbing but not lethal...we
never measure them anyways! All we ever see in the lab are physical values, and these
are trivially finite. As a practical matter, we take account of the infinities by using the
physical values of m and g in Feynman rules, and then systematically ignoring the divergent
contributions from higher-order diagrams.

Meanwhile, there were the finite contributions from the loop diagrams that we kinda
were neglecting. They too lead to modifications in m and g (perfectly calculable in this
case) – which are functions of the four-momentum of the line in which the loop is inserted
(in our example, p1 − p3). This means that the effective masses and coupling constants
actually depend on the energies of the particles involved; we call them “running” masses
and “running” coupling constants. The dependence is typically rather slight, at least at low
energies. They can be ignored but they are observable effects, such as the Lamb shift (in
QED) and asymptotic freedom (in QCD).

Before Going to QED...
Before we can go ahead to Quantum Electrodynamics, we need to first introduce (or

in some cases, review) the Dirac equation. We will proceed to do that now... For a more
thorough treatment, see Dyson [Dys06]. Note for the most part, the inspiration of this entire
article can be found in Griffiths [Gri87]. It is a good introductory text on general particle
physics too.

3 Klein-Gordon Review
Recall that the Schrodinger equation for the free nonrelativistic particle is

−~2

2m
∇2 |ψ〉 = −i~∂t |ψ〉 (3.1)

which corresponds to a sort of quantized Newton’s second law

p2

2m
≈ E. (3.2)

However, in special relativity we have the mass shell constraint

pµpµ = E2 − p · p = m2 (3.3)



4 Dirac takes it up a notch...bam! 11

(when c = 1) using Einstein summation convention. If we naively quantize this, we end up
with

∂µ∂
µ −m2 |ψ〉 = 0 (3.4)

by moving the mass term onto the left hand side. This is the Klein-Gordon equation, it is
plagued by problems such as negative probabilities, etc.

4 Dirac takes it up a notch...bam!
Naively, we want something simpler than this. We can rewrite Eq (3.3) to be

E2 = p · p +m2 ⇒ E =
√
p · p +m2 (4.1)

then quantize it to be

i~
∂

∂t
|ψ〉 =

√
−~2∇2 +m2 |ψ〉 . (4.2)

We end up being forced to use pseudo-differential operators, unfortunately, and it turns out
that this results in nonlocality2. For further details see Laemmerzahl [Lae93].

The approach Dirac takes is basically taking the squareroot of the operator, but he
does it with class. He uses a clifford algebra with generators γµ3 such that the squareroot of
the Klein Gordon equation breaks into two equations:

(i~γµ∂µ −m)ψ(x) = 0 (4.3)

where ψ(x) is a spinor wave function with 4 components. The adjoint field ψ̄(x) is defined
by

ψ̄(x) = ψ†(x)γ0 (4.4)

and satisfies the adjoint Dirac equation

ψ̄(x)(i~γµ∂µ +m) = 0. (4.5)

It is to be understood here the differential operator ∂µ acts on the left. Observe that when
we multiply the two operators together we get

(i~γµ∂µ +m)(i~γµ∂µ −m) = −~2 (γµ)
2
∂µ∂

µ −m2 = p̂µp̂µ −m2 (4.6)

which is precisely the Klein-Gordon operator (3.4)! We should be content now with the
connection back to what we already know. 〈Note to self: And an added advantage is that
the Dirac equation is a first order partial differential equation, whereas the Klein-Gordon
equation is a second order one!〉

4.1 A Somewhat Rigorous Derivation of the Dirac Equation

We want the squareroot of the wave operator thus

∇2 − 1

c2
∂2

∂t2
= (A∂x +B∂y + C∂z +

i

c
D∂t)(A∂x +B∂y + C∂z +

i

c
D∂t) (4.7)

We see multiplying out the right hand side all the cross-terms must vanish. To have this we
want

AB +BA = 0, (4.8)

and so on for all cross-term coefficients, with the property that

A2 = B2 = C2 = D2 = 1. (4.9)

2In general, whenever there is a squareroot quantity, there is nonlocality.
3If the reader is unfamiliar with the Gamma Matrices, see the appendix A and/or CORE [BRS95].
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Dirac had previously worked out rigorous results with Heisenberg’s matrix mechanics, and
concluded that these conditions could be met if A,B, . . . were matrices which has the
implication that the wave function has multiple components.

In the mean time, Pauli had been working on quantum mechanics as well. Pauli had a
model with two-component wave functions that was involved in a phenomenological theory
of spin. At this point in time, spin was not well understood.

Given the factorization of these matrices, one can now write down immediately an
equation

(A∂x +B∂y + C∂z +
i

c
D∂t)ψ = κψ (4.10)

with κ to be determined. Applying the same operation on either side yields

(∇2 − 1

c2
∂2t )ψ = κ2ψ. (4.11)

If one take κ = mc/~ we find that all the components of the wave function individually
satisfy the mass-shell relation (3.3). Thus we have a first order differential equation in both
space and time described by

(A∂x +B∂y + C∂z +
i

c
D∂t −

mc

~
)ψ = 0 (4.12)

where (A,B,C) = iβαk and D = β, which is precisely the Dirac equation for a spin-1/2
particle of rest mass m.

4.2 A Comparison to the Pauli Theory

The necessity of introducing half-integer spin goes back experimentally to the results
of the Stern-Gerlach experiment. 〈Note to self: A beam of atoms is run through a strong
inhomogeneous magnetic field, which then splits into N parts depending on the intrinsic
angular momentum of the atoms. It was found that for silver atoms, the beam was split in
two - the ground state therefore could not be integral, because even if the intrinsic angular
momentum of the atoms were as small as possible, 1, the beam would be split into 3 parts,
corresponding to atoms with Lz = −1, 0,+1. The conclusion is that silver atoms have net
intrinsic angular momentum of 1/2.〉 Pauli set up a model which explained the splitting
by introducing a two-component wave-function and a corresponding correction term in
the Hamiltonian(representing a semiclassical coupling of this wave function to an applied
magnetic field) as

H =
1

2m
(σIi (pi − e

c
Ai)σIj(p

j − e

c
Aj)) + eA0 (i, j, I = 1, 2, 3). (4.13)

We have here Aµ is the magnetic potential, and the van Warden symbols σJj which translates
a vector into the Pauli matrix basis (if one is unfamiliar with Pauli matrices, see §A.1), e is
the electric charge of the particle (here e = −e0 for the electron), and m is the mass of the
particle. Now we have just described the Hamiltonian of our system by a 2 by 2 matrix.
The Schrodinger equation based on it

Hφ = i~
∂φ

∂t
(4.14)

must use a two-component wave function. (If you’re like me you’re too lazy to flip to the
appendix, so I’ll reproduce some of it here) SU(2) is the set of all 2 by 2

matrices that is self-adjoint
and has a determinant of 1

Pauli used the SU(2) matrices

σk =

[
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

]
(4.15)

due to phenomenological reasons (explaining the Gerlach experiment). Dirac now has a
theoretical argument that implies spin is a consequence of introducing special relativity into
quantum theory.
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The Pauli matrices share the same properties as the Dirac matrices – they are all
self-adjoint, when squared are equal to the identity, and they anticommute. We can now use
the Pauli matrices Eq (4.15) to describe a representation of the Dirac matrices:

αk =

[
0 σk
σk 0

]
β =

[
12 0
0 −12

]
. (4.16)

We now may write the Dirac equation as an equation coupling two-component spinors:[
mc2 cσ · p
cσ · p −mc2

] [
φ+
φ−

]
= i~

∂

∂t

[
φ+
φ−

]
. (4.17)

Observe that we have on the diagonal the rest mass. If we bring the particle to rest, we have

i~
∂

∂t

(
φ+
φ−

)
=

(
mc2 0

0 −mc2
)(

φ+
φ−

)
. (4.18)

The equations for the individual two-spinors are now decoupled, and we see that the “spin-up”
and “spin-down” (or “right-handed” and “left-handed”, “positive frequency” and “negative
frequency” respectively) are individual eigenfunctions 〈Eigenspinors?〉 of the energy with
eigenvalues equal to ± the rest energy. The appearence of negative energy should not be
alarming, it is completely consistent with relativity.

Note that this seperation is in the rest frame and is not an invariant statement –
the bottom component does not generally represent antimatter. The entire four-component
spinor represents an irreducible whole – in general states will have an admixture of positive
and negative energy components.

4.3 Covariant Form and Relativistic Invariance

The explicity covariant form of the Dirac Equation is (using Einstein summation
convention)

i~γµ∂µψ −mcψ = 0, (4.19)

where γµ are the Dirac gamma matrices. We have

γ0 = β γk = γ0αk. (4.20)

See the appendix for more details on this representation.
The Dirac equation may be interpreted as an eigenvalue expression, where the rest mass

is proportional to an eigenvalue of the 4-momentum operator, the proportion being c:

P̂ψ = mcψ. (4.21)

In practice we often work in units where we set ~ and c to be 1. The equation is multiplied
by −i and takes the form

(γµ∂µ + im)ψ = 0. (4.22)

We may employ the Feynman slash notation to simplify this to

(/∂ + im)ψ = 0. (4.23)

For any two representations of the Dirac Gamma matrices, they are related by a unitary
transformation. Likewise, the solutions in the two representations are related by the same
way.



4 Dirac takes it up a notch...bam! 14

4.4 Conservation Laws and Canonical Structure

Recall the Dirac equation and its adjoint version, Eqns (4.3) and (4.5). We notice from
the definition of the adjoint

ψ̄ = ψ†γ0

that
(γµ)

†
γ0 = γ0γµ (4.24)

we can obtain the Hermitian conjugate of the Dirac equation and multiplying from the right
by γ0 we get its adjoint version:

ψ̄(γµ
←−
∂ µ − im) = 0

where
←−
∂ µ acts on the left. When we multiply the Dirac equation by ψ̄ from the left

ψ̄(γµ
−→
∂ µ + im)ψ = 0 (4.25)

(where
−→
∂ µ acts on the right) and multiply the adjoint equation by ψ on the right

ψ̄(γµ
←−
∂ µ − im)ψ = 0 (4.26)

then add the two together we get Conservation Law of Dirac
Current

ψ̄(γµ
−→
∂ µ + im)ψ + ψ̄(γµ

←−
∂ µ − im)ψ = ∂(ψ̄γµψ) = ∂µJ

µ0 (4.27)

(where Jµ is the Dirac Current) which is the law of conservation of the Dirac current in
covariant form. We see the huge advantage this has over the Klein-Gordon equation: this
has conserved probability current desnity as required by relativistic invariance...only now its
temporal component is positive definite:

J0 = ψ̄γ0ψ = ψ̄ψ. (4.28)

From this we can find a conserved charge

Q = q

∫
ψ†(x)ψ(x)d3x (4.29)

where q is to be thought of as “charge”.
We can now see that the Dirac equation (and its adjoint) are the Euler-Lagrange

equations of motion of the four dimensional invariant action

S =

∫
Ld4x (4.30)

where the Dirac Lagrangian density L is given by

L = cψ̄(x)
[
i~γµ∂µ −mc

]
ψ(x) (4.31)

and for purposes of variation, ψ and ψ̄ are considered to be independent fields. Relativistic
invariance follows from the variational principle.

Canonical Structure,
Hamiltonian and Momentum
operators

We can find the canonically conjugate momenta to the fields ψ and ψ̄:

π(x) =
∂L
∂ψ̇

= i~ψ† π̄(x) =
∂L
∂ ˙̄ψ

= 0. (4.32)

We can find the Hamiltonian of the Dirac field

H =

∫
d3x(πα(x)ψ̇α(x)− L) =

∫
d3xψ̄(x)[−i~cγj∂j +mc]ψ(x). (4.33)
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Similarly, the momentum of some field φ to be given by

cPα ≡
∫
d3xT 0α =

∫
d3x

[
cπr(x)

∂φr(x)

∂xα
− Lη0α

]
where T αβ is the stress-energy density tensor of the field φ. Recall that we define the
stress-energy density tensor by the equation

T αβ ≡ ∂L
∂φr,α

∂φr
∂xβ

− Lηαβ . (4.34)

Using this, we can find the momentum of the Dirac Field to be

P = −i~
∫
d3xψ†(x)∇ψ(x). (4.35)

Of course, the Hamiltonian given by (4.33) could have been discovered by finding the
Hamiltonian density applied to the current case.

We Angular Momentumcan similarly find the angular momentum of the Dirac Field by simply following
the scheme of finding the angular momentum for a general field. That is, an infinitesmal
transformation of the coordinates

xα → x′α ≡ xα + δxα = xα + εαβx
β + δα (4.36)

(where δα is an infinitesmal displacement and εαβ is an infinitesmal antisymmetric tensor
to ensure invariance of xαx

α under homogeneous Lorentz transformations, i.e. ones with
δα = 0) induces an infinitesmal transformation of the field φ:

φr(x)→ φ′r(x
′) = φr(x) +

1

2
εαβS

αβ
rs φs(x). (4.37)

Here the coefficients Sαβrs are antisymmetric in α and β, like εαβ , and are determined by the
transformation properties of the fields.

For a rotation (i.e. δα = 0) we have the continuity equation

∂Mαβγ

∂xα
= 0 (4.38)

where

Mαβγ ≡ ∂L
∂φr,α

Sβγrs φs(x) + [xβT αγ − xγT αβ ], (4.39)

(note that Mαβγ = −Mαγβ) and the six conserved quantities are We interpret Mαβ as
angular momentum

cMαβ =

∫
d3xM0αβ

=

∫
d3x
(

[xβT 0α − xβT 0α] + cπr(x)Sαβrs φs(x)
)
. (4.40)

We have stated that T 0i/c is the momentum density of the field, so we interpret the square
brackets of Eq (4.40) as the orbital momentum, and the last term as the intrinsic spin
angular momentum.

We can apply similar technqiues to the Dirac field. The transformation of the Dirac
field under an infinitesmal Lorentz transformation is given by

ψα → ψ′α(x′) = ψα(x)− i

4
εµνσ

µν
αβψβ(x), (4.41)
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where summation over µ, ν = 0, . . . , 3 and β = 1, . . . , 4 is implied, and where σµναβ is the
(α, β) matrix element of the 4× 4 matrix

σµν ≡ i

2
[γµ, γν ]. (4.42)

We can now “plug and chug” to find the angular momentum of the Dirac field

M =

∫
d3xψ†(x)[x ∧ (−i~∇)]ψ(x) +

∫
d3xψ†

(
~
2
σ

)
ψ(x) (4.43)

where
σ = (σ23, σ31, σ12) (4.44)

are 4×4 matrices generalizing Pauli matrices. We also observe that Eq (4.43) represent the
orbital and spin angular momentum of particles of spin 1/2.

4.5 Solutions to the Dirac Equation

The easiest approach to find solutions to the Dirac equation is to insist that the solution
is independent of spatial position:

∂ψ

∂x
=
∂ψ

∂y
=
∂ψ

∂z
= 0. (4.45)

This really describes a particle with zero momentum, since the momentum operator is i~∂µ
and all the spatial eigenvalues vanish. The Dirac equation simplifies to

i~
c
γ0
∂ψ

∂t
−mcψ = 0 (4.46)

or equivalently [
1 0
0 −1

] [
∂ψA/∂t
∂ψB/∂t

]
= −imc

2

~

[
ψA
ψB

]
(4.47)

where

ψA =

[
ψ1

ψ2

]
(4.48)

carries the upper two components and

ψB =

[
ψ3

ψ4

]
(4.49)

carries the lower two components. Thus

∂ψA
∂t

= −i
(
mc2

~

)
ψA, −∂ψB

∂t
= −i

(
mc2

~

)
ψB (4.50)

and the solutions are

ψA(t) = exp[−i(mc2/~)t]ψA(0), ψB(t) = exp[i(mc2/~)t]ψB(0). (4.51)

We should know that in Quatum mechanics, the term

exp(−iEt/~) (4.52)

is the characteristic for time dependence of a quantum state with energy E. It follows that
at rest with p = 0, the energy of the particle is E = mc2. So ψA is what we expect.

What about ψB? It has negative energy! What the heck?! This is a famous disaster,
and Dirac’s response was like the Hindenberg of physics. He suggested something called the
Hole theory, we will not discuss it here.
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We interpret these “negative” energy particles as antiparticles with positive energy. So
for us in our Dirac equation, ψB describes positrons (or antielectrons if one prefers to be
outlandish) and ψA describes electrons. Each of them is a 2 component spinor (a 2 column
vector). This is ideal as such a mathematical object describes a spin 1/2 particle. So, to
sum up, we have 2 particles that are each 2 solutions for a grand total of 4 independent
solutions with momentum p = 0:

ψ(1) = exp(i(mc2/~)t)


1
0
0
0

 ψ(2) = exp(i(mc2/~)t)


0
1
0
0

 (4.53)

ψ(3) = exp(−i(mc2/~)t)


0
0
1
0

 ψ(4) = exp(−i(mc2/~)t)


0
0
0
1

 (4.54)

describing (respectively) an electron with spin up, an electron with spin down, a positron
with spin up and an electron with spin down.

So to look at this from the perspective of solving differential equations, we have a
solution to the homogeneous equation and we will use the method of variation of parameters
to get solutions to the Dirac equation. What does this mean? Well, it means we are looking
for “plane wave solutions” that look like

ψ(r, t) = ae−i(Et−p·r)/~u(E,p) (4.55)

where a is a normalization constant (so probabilities add up to 1). We want to solve for
u(E,p) = u(p) (we will use p = (E/c,p) which is a 4 vector, and similarly x = (ct,x), which
is a mathematical object called a “bispinor”. We don’t want any old bispinor, we want one
that will solve Dirac’s equation! We have x dependence only in the exponent, so we find

∂µψ =
−i
~
pµae

−(i/hbar)xµpµu (4.56)

By plugging this into Dirac’s equation, we get

γµpµae
−(i/~)x·pu−mcae−(i/~)x·pu = 0 (4.57)

or if we want a neater and cleaner way to present it

(γµpµ −mc)u = 0. (4.58)

This is the “momentum space Dirac equation” (which we get by taking the Fourier Transform
of the Dirac equation we all know and love). Notice this is purely algebraic, no derivatives!
That’s the beauty of Fourier transforms in solving differential equations! If u satisfies (4.58)
then ψ satisfies the Dirac equation.

Now to prove this (because an assertion is always meaningless without a rigorous proof
– take note of this social “scientists”) we need to use a lot of gamma matrix manipulations.
Remember all representations are “equivalent” in the sense that they are related by unitary
transformations. First we have

γµpµ = γ0p0 − γ · p =
E

c

[
1 0
0 −1

]
− p ·

[
0 σ
−σ 0

]
=

[
E/c −p · σ
p · σ −E/c

]
(4.59)

SO it follows that

(γµpµ −mc)u =

[(
E
c −mc

)
−p · σ

p · σ
(−E
c −mc

)] [uA
uB

]
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=

[(
E
c −mc

)
uA −p · σuB

p · σuA
(−E
c −mc

)
uB

]
where the subscript A is for the upper two components and the B stands for the lower two.
In order to satisfy the momentum space Dirac equation, we must have

uA =
c

E −mc2
(p · σ)uB , uB =

c

E +mc2
(p · σ)uA (4.60)

We substitute the second into the first to give us

uA =
c2

E2 −m2c4
(p · σ)2uA (4.61)

Observe

p · σ = px

[
0 1
1 0

]
+ py

[
0 −i
i 0

]
+ pz

[
1 0
0 −1

]
=

[
pz (px − ipy)

(px + ipy) −pz

]
We find then by matrix multiplication (we will not calculate this out with every detail, but
we will show the result):

(p · σ)2 =

[
p2z + (px − ipy)(px + ipy) pz(px − ipy)− pz(px − ipy)
pz(px + ipy)− pz(px + ipy) (px + ipy)(px − ipy) + p2z

]
= p2I (4.62)

where I is the 2 by 2 identity matrix. We see then that by plugging this into our equation
for uA

uA =
p2c2

E2 −m2c4
uA (4.63)

which can be rearranged to be

(E2 −m2c4)uA = p2c2uA

⇒ (E2 − p2c2)uA = m2c4uA

and thus
E2 − p2c2 = m2c4 (4.64)

which is the famous Einstein equation we all know and love. This tells us that in order
to satisfy the Dirac equation, we have to obey the mass shell constraint. This admits two
solutions for E:

E = ±
√
m2c4 + p2c2 (4.65)

where the positive root is associated with particle states, and the negative root with
antiparticle states.

Using Eq (4.60), it is straightforward to calculate out the solutions to the Dirac equation
(ignoring normalization constants):

Pick uA =

[
1
0

]
then uB =

c

E +mc2
(p · σ)

[
1
0

]
=

c

E +mc2

[
pz

px + ipy

]

Pick uA =

[
0
1

]
then uB =

c

E +mc2
(p · σ)

[
0
1

]
=

c

E +mc2

[
px − ipy
−pz

]
Pick uB =

[
1
0

]
then uA =

c

E −mc2
(p · σ)

[
1
0

]
=

c

E −mc2

[
pz

px + ipy

]
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Pick uB =

[
0
1

]
then uA =

c

E −mc2
(p · σ)

[
0
1

]
=

c

E −mc2

[
px − ipy
−pz

]
For the first two of these, we must use the positive energy otherwise we have division by
zero, and if you divide by zero you go to hell. For the same reason, the energy in the latter
two are negative. It is convenient to “normalize” these spinors in such a way that

u†u = 2|E|/c (4.66)

where the dagger indicates the transpose conjugate (“Hermitian conjugate”) is used:

u =


a
b
c
d

⇒ u† = (a∗, b∗, c∗, d∗)

so that
u†u = |a|2 + |b|2 + |c|2 + |d|2. (4.67)

So we find that the four solutions are:

u(1) = N


1
0
cpz

E +mc2
c(px + ipy)

E +mc2

 (4.68)

u(2) = N


0
1

c(px − ipy)

E +mc2−cpz
E +mc2

 (4.69)

with E = +
√
m2c4 + p2c2

u(3) = N


cpz

E −mc2
c(px + ipy)

E −mc2
1
0

 (4.70)

u(4) = N


c(px − ipy)

E −mc2
c(−pz)
E −mc2

0
1

 (4.71)

with E = −
√
m2c4 + p2c2, and the normalization constant is

N =
√

(|E|+mc2)/c. (4.72)

Now we are really tempted to say that u(1) is an electron with spin up, and u(2) is an electron
with spin down, and so on, but this is not quite so. For Dirac Particles, the spin matrices are

S =
~
2

Σ with Σ ≡
[
σ 0
0 σ

]
(4.73)
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and it’s easy to check that u(1) is not an eigenstate of Σ. However, if we orient the z axis so
it points along the direction of motion (in which case px = py = 0) then u(1), u(2), u(3), and
u(4) are eigenspinors of Sz; u

(1) and u(3) are spin up, and u(2) and u(4) are spin down4

Now we have to discuss the importance of E and p, which are mathematical parameters
which correspond physically to energy and momentum. At least, this is true for the electron
states u(1) and u(2); but in u(3) and u(4) the E < 0...so it cannot represent positron energy.
All free particles – electrons and positrons alike – carry positive energy. The “negative-
energy” solutions must be reinterpreted as positive energy antiparticle states. To express
these solutions in terms of the physical energy and momentum of the positron, we flip the
signs of E and p:

ψ(r, t) = aei/~(Et−p·r)u(−E,−p) (4.74)

for solutions (3) and (4) of course. These are the same solutions, we just have changed the
signs of two parameters so it is physically appealing. It is customary to use v for positron
states, expressed in terms of the physical energy and momentum:

v(1)(E,p) = u(4)(−E,−p) = N


c(px − ipy)

E +mc2
c(−pz)
E +mc2

0
1

 (4.75)

v(2)(E,p) = u(4)(−E,−p) = N


c(pz)

E +mc2
c(px + ipy)

E +mc2

1
0

 (4.76)

(with E =
√
m2c4 + p2c2).

So we will no longer be working with u(3) and u(4); instead, the set of solutions we will
be working with are u(1), u(2) (representing the two spin states of an electron with energy
E and momentum p), and v(1), v(2) (representing the two spin states of a positron with
energy E and momentum p). Notice that whereas the u’s satisfy the momentum space Dirac
equation in the form

(γµpµ −mc)u = 0 (4.77)

the v’s obey the equation with the sign of pµ reversed:

(γµpµ +mc)v = 0. (4.78)

Sure this is interesting, but it’s only the special case of plane waves. Why bother? Well,
they are of interest because they describe particles with specified energies and momenta,
and in a typical experiment that’s what we control and measure.

5 Some Notes on Spinor Technology
It was mentioned that the Dirac spinor does not transform as a four-vector when one

changes from one inertial reference frame to another. So how exactly do they transform?

4It is actually mathematically impossible to construct spinors that satisfies the momentum Dirac equation
and are simultaneously eigenspinors of Sz (except for the special case p = pz ẑ). The reason is that S by
itself is not a conserved quantity. Only the total angular momentum L+ S is conserved. It is possible to
construct eigenspinors of helicity, Σ · p̂ (there’s no orbital angular momentum about the direction of motion),
but these are cumbersome and in practice we like to work with the spinors we have constructed, even though
it is difficult to have a physical intuition to what they mean. In the end, all that really matters is that we
have a complete set of solutions.
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Well, it’s quite a bit of work to do, but we will simply quote the result. If we go to a system
moving with speed v in the x direction, the transformation rule is

ψ → ψ′ = Sψ (5.1)

where S is the 4× 4 matrix

S = a+ + a−γ
0γ1 =

[
a+ a−σ1
a−σ1 a+

]
(5.2)

with
a± = ±

√
(γ ± 1)/2 (5.3)

and γ = 1/
√

1− v2/c2 is the Lorentz factor as usual.
Suppose we want to construct a scalar quantity out of a spinor ψ (we can do this with

vectors, it’s just the dot product). It would be reasonable to follow suite with the dot
product and try the following:

ψ†ψ =
[
ψ∗1 ψ∗2 ψ∗3 ψ∗4

] 
ψ1

ψ2

ψ3

ψ4

 = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2. (5.4)

Unfortunately this doesn’t quite work as well as we would like. We can illustrate this by
transforming coordinates:

(ψ†ψ)′ = (ψ′)†ψ′ = ψ†S†Sψ 6= (ψ†ψ) (5.5)

In fact

S†S = S2 = γ

[
1 −vσ1/c

−vσ1/c 1

]
6= 1. (5.6)

Of course we shouldn’t expect this to be invariant, with 4-vectors we have (if we are particle
physicists) the time component squared minus the sum of the space components squared.
We see now that we can introduce a notion of adjointness, that is an adjoint spinor:

ψ̄ ≡ ψ†γ0 =
[
ψ∗1 ψ∗2 −ψ∗3 −ψ∗4

]
(5.7)

We can see that
ψ̄ψ = ψ†γ0ψ = |ψ1|2 + |ψ2|2 − |ψ3|2 − |ψ4|2 (5.8)

is a relativistic invariant. Why? Well, S†γ0S = γ0 so we avoid the problems from our first
attempt.

Please Take Note!

We will be covering everything relevant here, and when the time comes we will be
performing in excrutiating detail every Feynman diagram of significance in QED.

6 Maxwell’s Equations in a Nutshell
Recall in classical electromagnetism we have it summed in Maxwell’s equations [Jac98].

In the presence of a charge density ρ(~x, t) and a current density ~j(~x, t), the electric and

magnetic fields ~E and ~B satisfy the equations

∇ · ~E = ρ (6.1a)

∇× ~B =
1

c
~j +

1

c

∂ ~E

∂t
(6.1b)

∇ · ~B = 0 (6.1c)



7 A Comically Brief Review 22

∇× ~E = −1

c

∂ ~B

∂t
(6.1d)

where cgs units are used.
In the second pair of equations (Eqs 6.1c and 6.1d) follows the existence of scalar and

vector potentials φ(~x, t) and ~A(~x, t) defined by

~B = ∇× ~A, ~E = −∇φ− 1

c

∂ ~A

∂t
. (6.2)

However, this does not determine the system uniquely, since for an arbitrary function f(~x, t)
the transformation

φ→ φ′ = φ+
1

c

∂f

∂t
, ~A→ ~A′ = ~A−∇f (6.3)

leaves the fields ~E and ~B unaltered. The transformation (6.3) is known as a gauge transfor-

mation of the second kind5. Since all observable quantities can be expressed in terms of ~E
and ~B, it is a fundamental requirement of any theory formulated in terms of potentials that
is gauge; i.e. the predictions for the observable quantities are invariant under such gauge
transformations.

When we express Maxwell’s equations in terms of potentials, the second pair are
automatically satisfied. The first pair (6.1a and 6.1b) become

−∇2φ− 1

c

∂

∂t
(∇ · ~A) = �φ− 1

c

∂

∂t

(
1

c

∂φ

∂t
+∇ · ~A

)
= ρ (6.4a)

� ~A+∇
(

1

c

∂φ

∂t
+∇ · ~A

)
=

1

c
~j (6.4b)

where

� ≡ 1

c2
∂2

∂t2
−∇2 (6.5)

is called the “D’Alembertian”.
We can now consider the so-called “free field” case. That is, we have no charge or

current so ρ = 0 and ~j = 0. We can choose a gauge for the system such that

∇ · ~A = 0. (6.6)

The condition (6.6) defines the Coulomb or radiation gauge. A vector field with vanishing
divergence (ie satisfying Eq (6.6)) is called a “transverse field” since for a wave

~A(~x, t) = ~A0 exp(i(~k · ~x− ωt)) (6.7)

gives
~k · ~A = 0, (6.8)

or in other words ~A is perpendicular to the direction of propagation ~k of the wave. In the
Coulomb gauge, the vector potential is a transverse vector.

7 A Comically Brief Review
The following is a table summarizing the properties of the solutions of the Dirac

equation.

5I.e. it is described mathematically in differential geometry as a connection form.
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Property Electrons Positrons

Spinor components ψ(x) = au(s)(p) exp[−(i/~)p · x] ψ(x) = av(s)(p) exp[−(i/~)p · x]
Momentum Space
Dirac Equation

(γµpµ −mc)u = 0 (γµpµ +mc)v = 0

Adjoint Dirac Equa-
tion

ū(γµpµ −mc) = 0 v̄(γµpµ +mc) = 0

Orthogonality ū(1)u(2) = 0 v̄(1)v(2) = 0
Normalization ūu = 2mc v̄v = −2mc

Complete
∑
s u

(s)ū(s) = (γµpµ +mc)
∑
s v

(s)v̄(s) = (γµpµ −mc)
A free photon, on the other hand, of momentum p = (E/c,p) with E = |p|c is

represented by the wave function

Aµ(x) = ae−(i/~)p·xεµ(s) (7.1)

where εµ is a spin dependent vector, s = 1, 2 for the two polarizations (“spin states”) of the
photon. The polarization vectors εµ(s) satisfy the momentum space Lorentz condition:

εµpµ = 0. (7.2)

They are orthogonal in the sense that

ε∗µ(1)ε
µ
(2) = 0. (7.3)

They are further normalized
ε∗µε

µ = 1. (7.4)

In the Coulomb gauge
ε0 = 0, ε · p = 0 (7.5)

and the polarization three-vectors obey the completeness relation∑
s=1,2

(ε(s))i(ε
∗
(s))j = δij − p̂ip̂j . (7.6)

8 Quantum Electrodynamics
8.1 The Rules to the Game

So we want to calculate out the probability amplitude M associated with a particular
Feynman diagram, we proceed as follows:

1. (Notation) We must be more careful here! We label the incoming and outgoing four-
momenta p1, p2, . . . , pn and the corresponding spins s1, s2, . . . , sn. We label the
inernal four-momenta q1, q2, . . . . Assign arrows to the lines as follows: the arrows
on external fermion lines indicates whether it is an electron or positron (if the arrow
points forward in time, it is an electron; backwards in time it is a positron); arrows
on internal fermion lines are assigned so that the “direction of the flow” through the
diagram is preserved (i.e. every vertex must have at least one arrow entering and
one arrow leaving). The arrows on photon lines (which is optional, since arrows are
used to indicate whether the particle is an antiparticle or not; bosons are their own
antipartners) point “forward” in time.

2. (External Lines) External lines contribute factors as follows:

Electrons:

{
Incoming: u

Outgoing: ū

Positrons:

{
Incoming: v̄

Outgoing: v
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Photons:

{
Incoming: εµ

Outgoing: (εµ)∗

3. (Vertex Factors) Each vertex contributes a factor

igeγ
µ (8.1)

The dimensionless coupling constant ge is related to the charge of the positron ge =
e
√

4π/~c =
√

4παE
6

4. (Propagators) Each internal line contributes a factor as follows

Electrons and Positrons:
iγµqµ +mc

q2 −m2c2
(8.2)

Photons:
−igµν
q2

(8.3)

5. (Conservation of Energy and Momentum) For each vertex, write a delta function of
the form

(2π)4δ(4)(k1 + k2 + k3) (8.4)

This enforces the conservation of momentum at the vertex.

6. (Integrate Over Internal Momenta) For each internal momentum q, write a factor

d4q

(2π)4
(8.5)

and integrate.

7. (Cancel the Delta Function) The result will include a factor

(2π)4δ(4)(p1 + p2 + · · · − pn) (8.6)

which corresponds to the overall energy-momentum conservation. Cancel this factor,
and we get −iM.

8. (Antisymmetrization) Include a minus sign between diagrams that differ only in the
interchange of two incoming (or outgoing) electrons (or positrons), or of an incoming
electron with an outgoing positron (or vice versa).

9 Elastic Processes
An elastic (relativistic) process is one where kinetic energy, rest energy, and mass are

all conserved. We will explore such examples in QED.

9.1 Electron-Muon Scattering

We draw the diagram (note the use of µ and ν at the vertices, which are used to sum
over in the integral):

6Here αE is the coupling constant of the electromagnetic force. In general, the QED coupling is −q
√

4π/~c
where q is the charge of the particle (as opposed to antiparticle). For electrons q = −e, for an up quark
q = (2/3)e.



9 Elastic Processes 25

We will now evaluate it in a haphazard manner. Observe how it is done when spinors
are in the game.

Step One: We will evaluate the part emboldened in Red first.

We will now analyze it in careful detail so we will “pull it out” and “dissect” it carefully.
We evaluate it in the following manner: since we write quantum mechanics like we write

chinese (from right to left), we begin with
p3,s3

dg
µ,q

p1,s1
e

= u(s1, p1),

p3,s3

dg
µ,q

p1,s1
e

= (igeγ
µ)u(s1, p1) (9.1)

We have one last step to do
p3,s3

dg
µ,q

p1,s1
e

= ū(s3, p3)(igeγ
µ)u(s1, p1) (9.2)

So this contributes
(ū(s3, p3))(igeγ

µ)(u(s1, p1)) (9.3)

to the integrand. Our integrand is going to take the form

[(ū(s3, p3))(igeγ
µ)(u(s1, p1))]

(
photon

propagator

)(
muon
terms

) conservation of
momentum delta

functions

 (9.4)

We will now move on to step two.
Step Two: We will consider the photon propagator, which corresponds to the red line

in the following diagram

This corresponds to the term
−igµν
q2

(9.5)

giving our integrand to be

[(ū(s3, p3))(igeγ
µ)(u(s1, p1))]

−igµν
q2

(
muon
terms

) conservation of
momentum delta

functions

 . (9.6)
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Step Three and Four: Moving right along to the Muon terms, we have exactly a
term analagous to Eq (9.3). Muons are fermions with spin 1/2, with the same electric charge
as an electron. So translating this into Feynman diagram terms, it is translated in the exact
same fashion we translated the electron terms. So we have a contribution of

(ū(s4, p4))(igeγ
ν)(u(s2, p2)). (9.7)

Our integrand now becomes

[(ū(s3, p3))(igeγ
µ)(u(s1, p1))]

−igµν
q2

[(ū(s4, p4))(igeγ
ν)(u(s2, p2))]

 conservation of
momentum delta

functions

 .

(9.8)
Step Five: We kind of “fudged up” steps 1 through 4 because they are so interconnected

it is hard to seperate them out from each other. We are now safely onto step 5 of the
Feynman rules of QED: conservation of momentum! We have two places to do this (at the
µ and ν vertices). We have for µ (chosen randomly) the input momentum in red and output
momentum in blue:

This corresponds to the conservation of momentum

p1 = p3 + q ⇒ p1 − p3 − q = 0 (9.9)

which gives us the delta function

(2π)4δ(4)(p1 − p3 − q). (9.10)

We have another conservation of momentum point, which is at the vertex ν:

Which corresponds to a conservation of momentum

p2 + q = p4 ⇒ p2 + q − p4 = 0 (9.11)

and thus contributes the delta function term

(2π)4δ(4)(p2 + q − p4) (9.12)

rendering our integrand to be

[(ū(s3, p3))(igeγ
µ)(u(s1, p1))]

−igµν
q2

[(ū(s4, p4))(igeγ
ν)(u(s2, p2))](2π)8
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×δ(4)(p1 − p3 − q)δ(4)(p2 + q − p4)d4q.

Step Six: We integrate over the internal momenta (in our case the photon’s momentum),
so we have the integral expression:

iM “=” (2π)4
∫

[(ū(s3, p3))(igeγ
µ)(u(s1, p1))]

−igµν
q2

[(ū(s4, p4))(igeγ
ν)(u(s2, p2))]

×δ(4)(p1 − p3 − q)δ(4)(p2 + q − p4)d4q.

Observe this is harder than it looks because we are taking the trace of gamma matrices! That
is the whole point of having the metric tensor gµν here. So it is a bit tricky to compute...

We will integrate over q and take advantage of the delta function term (9.10) to make
the switch

q → p1 − p3
giving us the result from the integral

(2π)4
ig2e

(p1 − p3)2
[(ū(s3, p3))(igeγ

µ)(u(s1, p1))][(ū(s4, p4))(igeγµ)(u(s2, p2))]δ(4)(p2+p1−p3−p4).

(9.13)
Step Seven: We simply set Eq (9.13) to be equal to −iMδ(4)(p2 + p1 − p3 − p4), and

we solve to find

M =
−g2e

(p1 − p3)2
[(ū(s3, p3))(igeγ

µ)(u(s1, p1))][(ū(s4, p4))(igeγµ)(u(s2, p2))] (9.14)

is the probability amplitude. In spite of this nightmarish appearence, with four spinors
and eight γ matrices, this is still just a number. We can figure it out when the spins are
specified.

9.2 Moller Scattering

Moller scattering is the scattering of electrons

e− + e− → e− + e−. (9.15)

We have two diagrams to consider this time! In fact, from here on out, we will always have
two diagrams to consider (the exception being one third order example, which is the most
important third order example because it explains the anamolous magnetic moment of an
electron – we’ll burn that bridge when we get to it).

Step One: The first diagram to consider is the following:

This is precisely the electron-muon diagram with the exception that the muon has been
replaced by an electron. Thus we will simply use the exact same steps we did in the first
example; we will copy/paste the results here.

The integrand should take the form

[(ū(s3, p3))(igeγ
µ)(u(s1, p1))]

−igµν
q2

[(ū(s4, p4))(igeγ
ν)(u(s2, p2))](2π)8
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×δ(4)(p1 − p3 − q)δ(4)(p2 + q − p4)d4q.

This has the contribution to the total probability amplitude that this process will happen of

M1 =
−g2e

(p1 − p3)2
[(ū(s3, p3))(igeγ

µ)(u(s1, p1))][(ū(s4, p4))(igeγµ)(u(s2, p2))] (9.16)

We will add it to the probability amplitude from the other graph to get the total probability
amplitude of the process happening.

The second diagram is odd:

We make the switch of (s3, p3) ⇐⇒ (s4, p4) for this diagram, and low and behold we
have a rule that takes care of this!

Step Eight: (Yes we are hopping right along!) We have by the eighth rule a change in
signs. So the probability amplitude from this second diagram is (when we make the switches
of p3 7→ p4, p4 7→ p3, s3 7→ s4, s4 7→ s3)

M2 =
g2e

(p1 − p4)2
[(ū(s4, p4))(igeγ

µ)(u(s1, p1))][(ū(s3, p3))(igeγµ)(u(s2, p2))] (9.17)

So the total probability amplitude is then

M =
−g2e

(p1 − p3)2
[(ū(s3, p3))(igeγ

µ)(u(s1, p1))][(ū(s4, p4))(igeγµ)(u(s2, p2))]

+
g2e

(p1 − p4)2
[(ū(s4, p4))(igeγ

µ)(u(s1, p1))][(ū(s3, p3))(igeγµ)(u(s2, p2))].

Concluding Remarks
We have just covered quite a bit in excrutiating detail, but you should have some idea

of how to compute Feynman diagrams now. This is actually more than enough to have you
begin reading books like Peskin and Schroeder [PS95], and that was the secret hope and
aim of this paper.

Perhaps in the future, we will include a section on being able to read the Feynman
rules and begin computing directly from that; or perhaps a discussion of non-Abelian gauge
theories in the Feynman diagrams. Or to derive Feynman rules from the Lagrangian alone!
Who knows what the future will hold...

A Gamma Matrices
For an extensive reference, see [BRS95]. The defining property for the gamma matrices

is that they form a Clifford algebra with the anticommutation relations

{γµ, γν} = γµγν + γνγµ = 2ηµνI (A.1)
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where ηµν is the Minkowski metric with signature (+—) and I is the unit (identity) matrix.
We can also define covariant gamma matrices by

γµ = ηµνγ
ν =

(
γ0,−γ1,−γ2,−γ3

)
(A.2)

where Einstein summation is used.

Remark A.1. We may define a fifth element of our Clifford algebra,

γ5 := iγ0γ1γ2γ3 (A.3)

or equivalently

γ5 =
i

4!
εµναβγ

µγνγαγβ (A.4)

which is true due to the anticommutation relations (A.1). It has the following properties:

1. (Hermitian) (γ5)† = γ5

2. (Eigenvalues are ±1)
{
γ5, γµ

}
= γ5γµ + γµγ5 = 0

3. (Anticommutes with other 4 generators)
{
γ5, γµ

}
= γ5γµ + γµγ5 = 0

Remark A.2. We can project a Dirac field onto its left-handed and right-handed components
by

ψL =
1− γ5

2
ψ, ψR =

1 + γ5

2
ψ (A.5)

which is often useful when dealing with chirality in a quantum mechanical setting.

We should think of the tuple γµ =
(
γ0, γ1, γ2,−γ3

)
= γ0e0 + γ1e1 + γ2e2 + γ3e3 sort

of as a 4-vector (where eµ is the basis vectors). But this is misleading! We should view the
γµ as a mapping operator that “eats up” a 4-vector aµ and “spits out” the corresponding
vector in the Clifford representation.

Such a result would be represented by the Feynman Slash

/a := γµaµ. (A.6)

It should be noted that this beast, /a, “lives” in the Clifford space so any changes to the
basis vectors are irrelevant.

A quick review of some of the properties of the Dirac Gamma matrices!

Property 1. (Normalisation) Due to the anticommutation relations (A.1), we can show(
γ0
)†

= γ0 and
(
γ0
)2

= I (A.7)

and for the other gamma matrices (for k = 1, 2, 3) we have(
γk
)†

= −γk and
(
γk
)2

= −I (A.8)

which results in a generalized relationship which encapsulates all this information:

(γµ)
†

= γ0γµγ0. (A.9)

Remark A.3. These relationships described below, and the property described above, are in
the (+—) signature; if we used the (-+++) signature, things would be different.

We also have a list of identities the Gamma matrices obey:

1. γµγµ = 4I,

2. γµγνγµ = −2γν ,
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3. γµγνγργµ = 4ηνρI,

4. γµγνγργσγµ = −2γσγργν .

Similarly, there are 5 trace identities the Gamma matrices obey

1. The trace of the product of an odd number of γ is 0,

2. tr(γµγν) = 4ηµν ,

3. tr(γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ),

4. tr(γ5) = tr(γµγνγ5) = 0,

5. tr(γµγνγργσγ5) = −4iεµνρσ.

A.1 Representations of the Gamma Matrices

We can represent the gamma matrices in various different ways that satisfy the anti-
commutation relations and all the above identities and properties. First recall the Pauli
matrices, as they will prove useful in our discussion:

σ1 = σx =

[
0 1
1 0

]
(A.10)

σ2 = σy =

[
0 −i
i 0

]
(A.11)

σ3 = σz =

[
1 0
0 −1

]
. (A.12)

We will let the 2 by 2 identity be denoted by I2 in this section.
One representation is the Dirac Basis

γ0 =

[
I 0
0 −I

]
, γi =

[
0 σi

−σi 0

]
, γ5 =

[
0 I
I 0

]
. (A.13)

Another common one used is the Weyl (chiral) basis which basically changes the
“temporal” gamma matrix while leaving the others the same. This causes the γ5 quantity to
change too. We can succinctly describe it as:

γ0 =

[
0 I
I 0

]
, γi =

[
0 σi

−σi 0

]
, γ5 =

[
−I 0
0 I

]
. (A.14)

This has the advantage that the chiral projections are merely

ψL =

[
I 0
0 0

]
ψ, ψR =

[
0 0
0 I

]
ψ. (A.15)

By slightly abusing notation, we can identify

ψ =

[
ψL
ψR

]
, (A.16)

where ψL and ψR are left-handed and right-handed two-component Weyl spinors.
The third, and for our investigations last, basis is the Majorana basis, in which all the

Dirac matrices are imaginary. We can write them as

γ0 =

[
0 σ2

σ2 0

]
, γ1 =

[
iσ3 0
0 iσ3

]

γ2 =

[
0 −σ2

σ2 0

]
, γ3 =

[
−iσ1 0

0 −iσ1

]
, γ5 =

[
σ2 0
0 −σ2

]
. (A.17)
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A.2 Euclidean Representation

Oftentimes in path integral approaches, we can Wick Rotate from Minkowski to
Euclidean spacetime by making time imaginary7. We then are forced to work with Euclidean
gamma matrices. There are two major representations in the Euclidean framework for them.

The first is the chiral representation, defined by

γ1,2,3 =

[
0 −iσ1,2,3

iσ1,2,3 0

]
, γ4 =

[
0 I
I 0

]
. (A.18)

This is different from the Minkowski set by the relation

γ5 = γ1γ2γ3γ4 = γ5+. (A.19)

So in a Chiral basis we have

γ5 =

[
I 0
0 −I

]
. (A.20)

The other form is the nonrelativistic form, which is succinctly described by

γ1,2,3 =

[
0 −iσ1,2,3

iσ1,2,3 0

]
, γ4 =

[
I 0
0 −I

]
, γ5 =

[
0 −I
−I 0

]
. (A.21)

B Decay Rates and Feynman Diagrams
Remember if we have some collection of particles (e.g. Muons) and they decay, the

decay rate Γ (the probability per unit time that any given muon will disintegrate) satisfies a
particular relation. If N(t) is the number of particles at time t, the infinitesmal change in
N from t to t+ dt is

dN = −ΓN(t)dt (B.1)

which tells us the number is decreasing when we move forward in time. It follows that

1

N
dN = −Γdt∫

1

N
dN = −

∫
Γdt

ln(N(t)) = −Γt+ C

N(t) = exp(−Γt) exp(C)

= N(0) exp(−Γt)

where N(0) is the initial number of particles, and C is the constant of integration.
The mean lifetime of the particle is simply the reciprocal of the decay rate

τ =
1

Γ
. (B.2)

If there are several different ways for the particle decay, each with different decay rates, the
total decay rate is given by the sum of the individual rates:

Γtot =

n∑
j=1

Γj (B.3)

and the mean lifetime is the reciprocal of this quantity

τ =
1

Γtot
. (B.4)

7Not as in “eleventeen is an imaginary number” but as in
√
−5 is an imaginary number.
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B.1 Fermi’s Golden Rule

Suppose we have one particle that decays into several others

1→ 2 + 3 + · · ·+ n (B.5)

If M is the total probability amplitude from the various Feynman diagram representations
of this process, then the infinitesmal decay rate is given by

dΓ = |M|2 S

2~m1

[(
cd3p2

(2π)32E2

)(
cd3p3

(2π)32E3

)
· · ·
(

cd3pn
(2π)32En

)]
×(2π)4δ(4)(p1−(p2+p3+· · ·+pn))

(B.6)

References
[BRS95] V. I. Borodulin, R. N. Rogalev, S. R. Slabospitsky. “CORE: COmpendium of

RElations: Version 2.1.” arXiv:hep-ph/9507456.

[Dys06] F. J. Dyson. “1951 Lectures on Advanced Quantum Mechanics Second Edition.”
arXiv:quant-ph/0608140.

[Gri87] D. Griffiths. Introduction to Elementary Particles. Wiley, second edition (1987).

[Jac98] J. D. Jackson. Classical Electrodynamics. Wiley, third edition (1998).

[Lae93] C. Laemmerzahl. “The Pseudodifferential operator square root of the Klein- Gordon
equation.” J. Math. Phys. 34 (1993) 3918–3932. doi:10.1063/1.530015.

[MS93] F. Mandl, G. Shaw. Quantum Field Theory . Wiley and Sons (1993).

[PS95] M. Peskin, D. V. Schroeder. An Introduction to Quantum Field Theory . Westview
Press (1995).

[Tha92] B. Thaller. The Dirac equation. Springer-Verlag (1992).

http://arxiv.org/abs/hep-ph/9507456
http://arxiv.org/abs/quant-ph/0608140
http://dx.doi.org/10.1063/1.530015
doi:10.1063/1.530015

	Feynman Rules in a Nutshell with a Toy Model
	Example
	A Slightly More Complicated Example

	Renormalization
	Klein-Gordon Review
	Dirac takes it up a notch...bam!
	A Somewhat Rigorous Derivation of the Dirac Equation
	A Comparison to the Pauli Theory
	Covariant Form and Relativistic Invariance
	Conservation Laws and Canonical Structure
	Solutions to the Dirac Equation

	Some Notes on Spinor Technology
	Maxwell's Equations in a Nutshell
	A Comically Brief Review
	Quantum Electrodynamics
	The Rules to the Game

	Elastic Processes
	Electron-Muon Scattering
	Moller Scattering

	Gamma Matrices
	Representations of the Gamma Matrices
	Euclidean Representation

	Decay Rates and Feynman Diagrams
	Fermi's Golden Rule


