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1 Tangent Vectors

1. The motivation underlying differential geometry is: we want to generalize vector calculus. A first step
is to generalize the notion of a “vector”. And really, if we look at a vector in vector calculus, there are two
components to it:

1. The base point, and
2. The vector part.

Linear algebra studies “the vector part”, assuming all the vectors live at the same base point (i.e., within
the same vector space).

1.1. Remark. We will introduce the concepts, like paint on a canvas, in layers. The first pass (“primer”) will
be in R3 (but easily could work in Rn for any n ∈ N). The second pass will be on a surface Σ ⊂ R3 (again,
it could be generalized to a surface Σ ⊂ Rn for any n ∈ N). The third pass “breaks the bottle”, cutting the
cord with an “ambient Rn”, and works with manifolds. Since this is a prospectus, we will only look at the
first pass; this truly is a “primer”.

2. Definition. A “Tangent Vector in R3” is an ordered pair vp := (p,v) where p ∈ R3 is the base point,
and v ∈ R3 is the vector part.

2.1. Remark. In ordinary vector algebra/calculus, we often ignore the base point (and whenever we add
two vectors with different base points, we just transport them to the same base point). But in differential
geometry, we must be more careful:

1. We can only add two tangent vectors if they live at the same base point. So vp + wq makes sense
provided p = q.

2. We have vp = vq if and only if p = q.
In vector calculus, we typically freely transport tangent vectors along to share the same base point. This is
not longer “free” in differential geometry, so care must be taken.

3. Definition. The tangent vectors at a given base point p ∈ Rn form a vector space TpRn called the
“Tangent Space of Rn at p”.

3.1. Remark. Note that TpRn is isomorphic (as a vector space) to Rn as a vector space, but we must
remember that at different base points p ̸= q we have TpRn ̸= TqRn different tangent spaces.

1.1 Vector Fields

4. Definition. A “Vector Field” V on Rn assigns to each point p ∈ Rn a tangent vector V (p) at p.
We call Vect(Rn) the set of all vector fields on Rn.

5. Structure of Vect(Rn). Note that Vect(Rn) is an infinite-dimensional vector space over the ring of
[smooth] real-valued functions. If we let V , W ∈ Vect(Rn), p ∈ Rn, and f : Rn → R, observe V (p) ∈ TpRn,
and

(V +W )(p) = V (p) +W (p) (1.1a)

(fV )(p) = f(p)V (p). (1.1b)

Note that the operations on the right-hand side of these equations are the vector addition and scalar multi-
plication in TpRn, whereas the operations on the left-hand side are the newly-defined binary operators for
Vect(Rn).

The natural question to ask, what about a “basis vector field”?
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6. Definition. There are n obvious vector fields U1, U2, . . . , Un ∈ Vect(Rn) defined by

U1(p) = (1, 0, 0, . . . , 0)p

U2(p) = (0, 1, 0, . . . , 0)p

...

Un(p) = (0, 0, 0, . . . , 1)p ∈ Vect(Rn)

(1.2)

called the “Natural Frame Field”.

7. Definition. More generally, in Rn, a “Frame Field” is a list of n vector fields W1, W2, . . . , Wn ∈
Vect(Rn) such that at each p ∈ Rn the vectors W1(p), W2(p), . . . , Wn(p) form a basis of TpRn.

8. Lemma. Given any V ∈ Vect(Rn), we can write

V = v1U1 + v2U2 + · · ·+ vnUn, (1.3)

where Ui are natural frame fields and vi : Rn → R for i = 1, 2, . . . , n.

Proof. At each p ∈ Rn, the tangent vector V (p) ∈ TpRn can be written in coordinates as

V (p)

=
∣∣ since V (p) is a vector and can be written in components relative to a canonical basis (a)

(v1(p), . . . , vn(p))p

=
∣∣ because U1(p), . . . , Un(p) form a [canonical] basis of TpRn (b)

v1(p)U1(p) + · · ·+ vn(p)Un(p)

=
∣∣ since U1, . . . , Un are vector fields, using scalar multiplication (§5) (c)

(v1U1 + · · ·+ vnUn)(p)

Since we were using p ∈ Rn arbitrary, we have V = v1U1 + · · ·+ vnUn.

8.1. Remark (Definition). The functions vi : Rn → R are called the “Coordinate Functions” of V relative
to the frame field Ui.

9. Definition. We say a vector field is “Differentiable” if all its coordinate functions (with respect to
the natural frame field) are differentiable. Similarly, we call a vector field “Smooth” (C∞) if its coordinate
functions are C∞ (i.e., they have all partial derivatives [including mixed partial derivatives] of all orders).

9.1. Remark. We could specify the subset of smooth vector fields as C∞ Vect(Rn), but we will implicitly
assume everything is smooth from now on.

9.2. Remark. We could also work with Ck vector fields by demanding only the first k ∈ N order partial
derivatives of the coordinate functions exist and be continuous. Or we could demand they be analytic
functions, and we could work analytic vector fields, traditionally denoted Cω Vect(Rn).

1.2 Directional Derivatives

10. Definition. Given a tangent vp ∈ TpRn, we can use it to differentiate a smooth function f ∈ C∞(Rn).
We define the “Directional Derivative” of f in the vp direction [or, the directional derivative of f with
respect to vp] as:

vp[f ] =
d

dt
f(p+ tv)

∣∣∣∣
t=0

, (1.4)

which represents the rate of change of f in the v direction at the point p.
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10.1. Remark. This lets us think of a tangent vector as a map

vp : C
∞(Rn)→ R

f 7→ vp[f ].
(1.5)

11. Example. Assume f ∈ C∞(R3), vp ∈ TpR3, and let us write p = (px, py, pz), vp = (vx, vy, vz)p. Then
we can explicitly determine what the directional derivative of f with respect to vp looks like:

vp[f ]

=
∣∣ by Definition 10 (a)

d

dt
f(p+ tv)

∣∣∣∣
t=0

=
∣∣ unfold components (b)

d

dt
f(px + tvx, py + tvy, pz + tvz)

∣∣∣∣
t=0

=
∣∣ chain-rule and linearity of derivative (c)(
∂f

∂x
(p+ tv)

)
vx +

(
∂f

∂y
(p+ tv)

)
vy +

(
∂f

∂z
(p+ tv)

)
vz

∣∣∣∣
t=0

=
∣∣ evaluate at t = 0, then use the dot product (d)

(vx, vy, vz) ·
(
∂f

∂x
(p),

∂f

∂y
(p),

∂f

∂z
(p)

)
=

∣∣ folding back into vector form (e)

v · (∇f(p)).

This should look familiar: it’s the directional derivative from vector calculus.

12. Definition. Let f ∈ C∞(Rn) and V ∈ Vect(Rn). We can take “Directional Derivative” of f with
respect to the vector field V denoted V [f ] : Rn → R given by, for any p ∈ Rn,

(V [f ])(p) = V (p)[f ]. (1.6)

13. Proposition. Let f, g, h ∈ C∞(Rn), a, b ∈ R, and V,W ∈ Vect(Rn).
1. (fV + gW )[h] = fV [h] + gW [h]
2. Linearity: V [af + bg] = aV [f ] + bV [g]
3. Product rule: V [fg] = V [f ]g + fV [g]

1.3 Differential Forms

14. Definition. Given some (real) vector spaceW , a “Covector” (or dual vector) is a linear map φ : W →
R.

15. Notation change: Indices, superscripts, subscripts. I am going to try to be consistent from
now on, with coordinates to tangent vectors being written with superscipted indices, frame fields with
subscripted indices (so V = v1U1 + v2U2 + · · · + vnUn), covector bases written with superscripted indices,
and components/coordinates of covectors with subscripted indices. This seems random and insane at first
(and it probably is), but this is the convention which physicists use. It also lends itself to the Einstein
summation convention, where we sum over repeated indices, for example:

viUi :=

n∑
i=1

viUi. (1.7)

We will use explicit summation in our notes, for explicit clarity.
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16. Example. Consider W = R3 and define φ : W → R by

φ

w1

w2

w3

 = w1. (1.8)

It’s linear (it’s just the projection map onto the first coordinate, which is famously linear). Thus it’s a
covector.

17. Example. Consider W = R3 and define φ : W → R by

φ

w1

w2

w3

 = α1w
1 + α2w

2 + α3w
3, (1.9)

where α1, α2, α3 ∈ R are fixed constants. We see this is linear, and we could write it as:

[
α1 α2 α3

] w1

w2

w3

 = α1w
1 + α2w

2 + α3w
3. (1.10)

The row vectors are called covectors, the column vectors are vectors.

18. Definition. IfW = TpRn, then a covector is called a “Cotangent Vector”. The space of all cotangent
vectors to TpRn is called the “Cotangent Space with Base Point p” and denoted T∗

pRn.

19. Example. Let p ∈ Rn, define φ : TpRn → R by

φ(vp) = v1, (1.11)

where vp = (v1, . . . , vn)p. This is linear:

φ(avp + bwp) = φ ((av + bw)p) (1.12a)

= (av + bw)1 (1.12b)

= aφ(vp) + bφ(wp). (1.12c)

20. Definition. A “One-Form” (or “Covector Field”) φ on Rn assigns to each point p ∈ Rn a covector
φp : TpRn → R.

20.1. Remark. A one-form is one way of getting certain information out of the vector field.
If V is a vector field and φ is a one-form, we get (at each point p ∈ Rn):

φp(V (p)) ∈ R. (1.13)

So at each point we get a number; so φ and V give us a function. That is, we may think of φ as a map

φ : Vect(Rn)→ C∞(Rn),
V 7→ φ(V ),

(1.14)

as defined by
(φ(V )) (p) = φp(V (p)). (1.15)

The main way to obtain a 1-form is to take a differential (of a function).

21. Definition. Given a smooth function f ∈ C∞(Rn), define the “Differential of f” to be the map

df : Vect(Rn)→ C∞(Rn) (1.16)

given by, for any V ∈ Vect(Rn),
df [V ] = V [f ], (1.17)

i.e., given by the directional derivative of f in the direction of V (§12).
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22. Differential forms are one-forms. In fact, df really is a one-form. We check linearity, letting
V,W ∈ Vect(Rn) be arbitrary,

df [V +W ] = (V +W )[f ] (1.18a)

= V [f ] +W [f ] (1.18b)

= df [V ] + df [W ] (1.18c)

for arbitrary c ∈ R,

df [cV ] = (cV )[f ] (1.19a)

= c(V [f ]) (1.19b)

= cdf [V ] (1.19c)

For arbitrary h : Rn → R smooth,

df [hV ] = (hV )[f ] (1.20a)

= h · (V [f ]) (1.20b)

= hdf [V ]. (1.20c)

23. Example. Let x1, . . . , xn be the standard coordinate functions on Rn. Then we see

dxj [Ui] = Ui[x
j ] (1.21a)

=
∂

∂xi
xj (1.21b)

= δi
j = δji (1.21c)

is the Kronecker delta δji = 0 if i ̸= j and δji = 1 if i = j. Then for any vector field V ∈ Vect(Rn), we have,

dxj [V ] = dxj

[∑
i

viUi

]
(1.22a)

=
∑
i

dxj [viUi] (1.22b)

=
∑
i

vi dxj [Ui] (1.22c)

=
∑
i

viδji (1.22d)

= vj . (1.22e)

So dxj just picks out the jth component of the vector field at the point.

24. Rosetta Stone. At this point, it’s useful to write a “Rosetta Stone” relating “Stuff” and “Co-Stuff”.

Stuff Co-Stuff
• Tangent vector vp ∈ TpRn (vectors with base
points)

• Cotangent vectors ϕp ∈ T∗
pRn is a linear map

ϕp : TpRn → R
• Vector Field V gives a tangent vector at each
point V (p) ∈ TpRn

• One-Forms, or Covector fields, ϕ assigns a
cotangent vector ϕp at each point p ∈ Rn
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• Vector fields act on functions (by the direc-
tional derivative) to give new functions:

(V [f ])(p) =
d

dt
f(p+ tv)

∣∣∣∣
t=0

• One-forms act on vector fields to give functions
(ϕ[V ])(p) = ϕp[V (p)].
• Any smooth function f : Rn → R gives a one-
form df by the rule (df)p[vp] = vp[f ], or
df [V ] = V [f ].

• The natural frame field on Rn is given by
the standard coordinate vector fields U1(p) =
(1, 0, . . . , 0)p and so on. These are special be-

cause Ui[f ] =
∂f

∂xi
(p).

• The differentials of the coordinate functions
x1, . . . , xn 7→ dx1, . . . , dxn are special because
dxi[Uj ] = δij .

• We proved in Lemma 8 that any vector field
can be written as V =

∑
i v
iUi where the smooth

functions vi are the coordinate functions of V rel-
ative to the frame field Ui.

• We will show that any covector field (i.e., one-
form) ϕ can be written as ϕ =

∑
i fi dx

i where
the fi are called the “Coordinate functions of
ϕ relative to the coframe field” given by dxj .

Stuff Co-Stuff

25. Proposition. Every one-form is a C∞(Rn) linear combination of the dxi.

Proof. Suppose ϕ is a one-form Then for any vector field V ∈ Vect(Rn),

ϕ[V ]

=
∣∣ because V =

∑
i v
iUi (a)

ϕ
[∑

i v
iUi
]

=
∣∣ by linearity of ϕ (b)∑
i v
iϕ[Ui]

=
∣∣ recall dxi[V ] = vi (c)∑
i dx

i[V ]ϕ[Ui]

=
∣∣ commutativity of multiplication of real numbers (d)∑
i ϕ[Ui] dx

i[V ]

=
∣∣ linearity (e)(∑
i ϕ[Ui] dx

i
)
[V ].

Since this is true for all V , that means ϕ =
∑
i ϕ[Ui] dx

i. That’s what we wanted to prove. In fact, we have
an explicit formula for the coefficients.

26. Corollary. If ϕ = df , then

df =
∑
i

∂f

∂xi
dxi.

Proof. We can compute this directly,

df =
∑
i

df [Ui] dx
i (1.23a)

=
∑
i

Ui[f ] dx
i (1.23b)

=
∑
i

∂f

∂xi
dxi. (1.23c)

Hence the result.
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27. Definition: Differential Operator. We actually have something more. We have the “Differen-
tial” is a map

d: {functions} → {one-forms}, (1.24a)

defined by

df :=
∑
i

∂f

∂xi
dxi. (1.24b)

Let us now prove properties about the differential operator.

28. Proposition (Leibniz rule). For any f, g ∈ C∞(Rn), we have d(fg) = g df + f dg.

Proof. Let V ∈ Vect(Rn) be arbitrary, then we have

d(fg)[V ] = V [fg] (1.25a)

= V [f ] g + f V [g] (1.25b)

= g df [V ] + f dg[V ] (1.25c)

= (g df + f dg)[V ]. (1.25d)

Since V was arbitrary, the result follows.

29. Proposition (Chain rule). Let f : Rn → R and h : R → R. Then for any p ∈ Rn, d(h ◦ f)p =
h′(f(p)) dfp.

Proof. Let vp ∈ TpRn be arbitrary, then

d(h ◦ f)p[vp] = vp[h ◦ f ] (1.26a)

=
d

dt
h(f(p+ tv))

∣∣∣∣
t=0

(1.26b)

= h′(f(p+ tv))
d

dt
f(p+ tv)

∣∣∣∣
t=0

(1.26c)

= h′(f(p))vp[f ] (1.26d)

= h′(f(p)) df [vp]. (1.26e)

Since this is for arbitrary tangent vectors, the result follows.

30. Example. Let’s work in R2, let x1 = x and x2 = y. Consider

f(x, y) = x2 sin(y) + y3x. (1.27)

We compute the one-form df :

df

=
∣∣ unfold the definition of f (a)

d(x2 sin(y) + y3x)

=
∣∣ linearity of d (b)

d(x2 sin(y)) + d(y3x)

=
∣∣ Leibniz rule (c)(
x2 d(sin(y)) + sin(y) d(x2)

)
+
(
y3 d(x) + xd(y3)

)
=

∣∣ calculus (d)

(x2 cos(y) dy + 2x sin(y) dx) + (y3 dx+ 3y2xdy)

=
∣∣ gather terms (e)
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(2x sin(y) + y3) dx+ (x2 cos(y) + 3y2x) dy.

This coincides with df = (∂xf) dx+ (∂yf) dy.

31. Example. Working over R2 with x1 = x, x2 = y, consider g(x, y) = cos
√
xy. Compute the one-form

dg. The trick is to consider h(z) = cos
√
z and f(x, y) = xy, so g = h ◦ f . This is because we will use the

chain-rule for differential forms, which requires computing h′(f(x, y)) and df . We start with

dg

=
∣∣ unfold the definition of g (a)

d(h ◦ f)
=

∣∣ chain rule (§29) (b)

dh(z)

dz

∣∣∣∣
z=f(x,y)

df

Now we need to compute h′(f(x, y)),

dh(z)

dz

∣∣∣∣
z=f(x,y)

=
∣∣ unfold definition of h (c)

d cos
√
z

dz

∣∣∣∣
z=f(x,y)

=
∣∣ chain rule (d)

− sin
√
z
d
√
z

dz

∣∣∣∣
z=f(x,y)

=
∣∣ power rule (e)

− sin
√
z

1

2
√
z

∣∣∣∣
z=f(x,y)

=
∣∣ substitution, simplify numerator (f)

− sin
√
f(x, y)

2
√
f(x, y)

=
∣∣ unfold definition of f (g)

− sin
√
xy

2
√
xy

We similarly can compute df ,

df

=
∣∣ unfold definition of f (h)

d(xy)

=
∣∣ Leibniz rule (i)

xdy + y dx

We can combine everything together:

dg

=
∣∣ chain rule (§29)
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dh(z)

dz

∣∣∣∣
z=f(x,y)

df

=
∣∣ from our previous calculations (j)

− sin
√
xy

2
√
xy

(xdy + y dx).

Thus we conclude

df =
sin
√
xy

2
√
xy

(xdy + y dx), (1.28a)

or rearranging factors,

df =

(
−1
2

y
√
xy

sin
√
xy

)
dx+

(
−1
2

x
√
xy

sin
√
xy

)
dy. (1.28b)

1.4 Algebra of Differential Forms

32. We know how to add one-forms together, and we know how to multiply one-forms by “scalars” (i.e.,
smooth functions). But what about the multiplication of one-forms by other one-forms?

Now let’s formally define a definition of multiplication of one-forms called the “Wedge Product”
denoted “∧”. By “formal”, we mean we’ll just produce a series of rules that the wedge product satisfies.

Given two one-forms ϕ and ψ, their “Wedge Product”

ϕ ∧ ψ (1.29)

is called a “Two-Form”. More generally, we can multiply two-forms by scalars and add them together, so
a generic two-form looks like

fϕ ∧ ψ + · · ·+ gµ ∧ λ. (1.30)

More generally, we could take the wedge product of 3 one-forms to produce a three-form, or the wedge
produce of n one-forms to produce an n-form.

33. Example. On R15, we have dx1 ∧ dx2 + sin(x1) dx2 ∧ dx10 be a perfectly good 2-form.

34. Axioms of Wedge Product. We stipulate the wedge product satisfies the following axioms:
1. Associativity: ϕ ∧ (ψ ∧ µ) = (ϕ ∧ ψ) ∧ µ
2. Left distributivity over addition: ϕ ∧ (ψ + µ) = ϕ ∧ ψ + ϕ ∧ µ
3. Anticommutativity on 1-forms: ϕ ∧ ψ = −ψ ∧ ϕ.
4. Scalar multiplication: f · (ϕ ∧ ψ ∧ . . . ) = (fϕ) ∧ ψ ∧ (. . . ).

35. Consequences. From these axioms, we have two consequences:
1. Right distributivity over addition: (ψ + µ) ∧ ϕ = ψ ∧ ϕ+ µ ∧ ϕ
2. Scalar distributivity: (fϕ) ∧ ψ = f · (ϕ ∧ ψ) = ϕ ∧ (fψ)
3. Nilpotence: ϕ ∧ ϕ = 0.

Proof. These are straightforward calculations.

(ψ + µ) ∧ ϕ
=

∣∣ anti-commutativity (a)

−ϕ ∧ (ψ + µ)

=
∣∣ left distributivity (b)

−ϕ ∧ ψ − ϕ ∧ µ
=

∣∣ anti-commutativity (c)

ψ ∧ ϕ+ µ ∧ ϕ.
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Similarly, for scalar distributivity,

(fϕ) ∧ ψ
=

∣∣ scalar multiplication (d)

f · (ϕ ∧ ψ)
=

∣∣ anticommutativity (e)

f · (−ψ ∧ ϕ)
=

∣∣ scalar multiplication (f)

−(fψ) ∧ ϕ
=

∣∣ anticommutativity (g)

ϕ ∧ (fψ).

Nilpotence follows from anticommutativity, since the only number for which ϕ∧ϕ = −ϕ∧ϕ is when ϕ∧ϕ = 0.
(If you don’t believe me, add ϕ ∧ ϕ to both sides and divide by 2.)

36. Proposition. Any two-form on R3 may be written in the form

f dx ∧ dy + g dy ∧ dz + hdz ∧ dx, (1.31)

where f, g, h ∈ C∞(R3).

Proof. Let’s show if ϕ, ψ are one-forms, then ϕ ∧ ψ can be written like Eq (1.31). Let

ϕ =

3∑
i=1

fi dx
i (1.32a)

ψ =

3∑
j=1

gj dx
j (1.32b)

We can compute:

ϕ ∧ ψ
=

∣∣ unfolding ϕ, ψ (a)

(
∑3
i=1 fi dx

i) ∧ (
∑3
j=1 gj dx

j)

=
∣∣ distributivity, linearity, anticommutativity (b)

(f1g2 − f2g1) dx1 ∧ dx2 + (f2g3 − f3g2) dx2 ∧ dx3 + (f3g1 − f1g3) dx3 ∧ dx1

Since an arbitrary two-form is some linear combination of wedge products of one-forms, we just have to use
this result and collect terms.

36.1. Remark. The preceding formula looks a lot like the cross-product of vectors, and it would be if:
1. The dxi were “orthonormal basis vectors”
2. We replaced the wedge products with the following basis vectors dx1 ∧ dx2 → e3, dx

2 ∧ dx3 → e1,
dx3 ∧ dx1 → e2.

36.2. Remark. Similar results hold for k-forms in Rn.

37. Example. Every 2-form on R4 can be written as a linear combination of dx1∧dx2, dx1∧dx3, dx1∧dx4,
dx2 ∧ dx3, dx2 ∧ dx4, dx3 ∧ dx4.

38. Example. In general, every k-form on Rn is a linear combination of
(
n
k

)
basis k-forms. In particular,

for k > n, every k-form is zero.
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39. Wedge Product of Forms. The wedge product is a map

∧ : {k-forms} × {ℓ-forms} → {(k + ℓ)-forms}
(ω, λ) 7→ ω ∧ λ.

(1.33)

In fact, it’s useful to think of smooth functions as “0-forms” to complete the picture, where we define the
wedge product as just the scalar product f ∧ ϕ = fϕ. So we have, in Rn,

• 0-forms: smooth functions
• 1-forms: covector fields
• . . .
• n-forms

The “k” in “k-form” is called the “Degree” of the form, written deg(ϕ).

40. Theorem. For any differential forms ϕ, ψ, we have

ϕ ∧ ψ = (−1)(deg ϕ)(deg ψ)(ψ ∧ ϕ). (1.34)

Proof. It suffices to prove this for monomials ϕ = f dxi1 ∧ · · · ∧ dxik and ψ = g dxj1 ∧ · · · ∧ dxjℓ . The trick
is to do this by induction on ℓ (the degree of ψ).

Base Case: ℓ = 1, we see

ϕ ∧ ψ = (f dxi1 ∧ · · · ∧ dxik) ∧ (g dxj1). (1.35)

We can move the g out in front without a problem, then we must move the dxj1 in front of k one-forms,
which will cost us a factor of (−1)k, giving us:

ϕ ∧ ψ = (−1)kfg dxj1 ∧ dxi1 ∧ · · · ∧ dxik . (1.36)

And since deg(ϕ) deg(ψ) = k, we’re good.
Inductive Hypothesis: we now assume this works for arbitrary ℓ ∈ N.
Inductive Case: we now will prove this is the case for (ℓ+1)-forms. We write ψ = ψ(ℓ) ∧ dxjℓ+1 . Then

we have
ϕ ∧ ψ = ϕ ∧ (ψ(ℓ) ∧ dxjℓ+1). (1.37)

We invoke associativity to write the right-hand side as

ϕ ∧ ψ = (ϕ ∧ ψ(ℓ)) ∧ dxjℓ+1 . (1.38)

Now look, we have precisely our base case. What’s more: g = 1 in our current situation. So we use the
inductive hypothesis to rewrite

(ϕ ∧ ψ(ℓ)) ∧ dxjℓ+1 = ((−1)(deg ϕ)ℓψ(ℓ) ∧ ϕ) ∧ dxjℓ+1 (1.39)

and invoking the base case to rewrite the right-hand side as

((−1)(deg ϕ)ℓψ(ℓ) ∧ ϕ) ∧ dxjℓ+1 = (−1)(ℓ+deg ϕ)1dxjℓ+1 ∧ ((−1)(deg ϕ)ℓψ(ℓ) ∧ ϕ)
= (−1)(ℓ+deg ϕ)+(deg ϕ)ℓdxjℓ+1 ∧ (ψ(ℓ) ∧ ϕ).

(1.40)

We have to move dxjℓ+1 behind the ψ(ℓ), so we use associativity

(−1)(ℓ+deg ϕ)+(deg ϕ)ℓdxjℓ+1 ∧ (ψ(ℓ) ∧ ϕ) = (−1)(ℓ+deg ϕ)+(deg ϕ)ℓ(dxjℓ+1 ∧ ψ(ℓ)) ∧ ϕ. (1.41)

Then we can use the inductive hypothesis setting ϕ = dxjℓ+1

(−1)(ℓ+deg ϕ)+(deg ϕ)ℓ(dxjℓ+1 ∧ ψ(ℓ)) ∧ ϕ = (−1)(ℓ+deg ϕ)+(deg ϕ)ℓ((−1)ℓψ(ℓ) ∧ dxjℓ+1) ∧ ϕ
= (−1)(ℓ+deg ϕ)+(deg ϕ)ℓ((−1)ℓψ(ℓ+1)) ∧ ϕ.

(1.42)

Now we just need to prove that

(−1)(ℓ+deg ϕ)+(deg ϕ)ℓ+ℓ = (−1)(deg ϕ)(ℓ+1). (1.43)

But this is trivial, since (ℓ+ deg ϕ) + (deg ϕ)ℓ+ ℓ = 2ℓ+ deg(ϕ) + ℓ · deg(ϕ) and (−1)2ℓ = 1.
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1.5 Exterior Derivative

41. The goal is to “extend” the differential d so it can work on any differential form. We know if f ∈
C∞(Rn), then f is a zero-form and df is a one-form. In general we want to differential to produce (k + 1)-
forms from k-forms,

d: {k-forms} → {(k + 1)-forms} (1.44)

which satisfy
1. d acting on a zero-form remains the same as before.
2. d is R-linear — we can pull out constants but not functions,
3. Graded Leibniz property: for any differential forms ϕ and ψ, we want d(ϕ∧ψ) = (Dϕ)∧ψ+(−1)deg(ϕ)ϕ∧

dψ.
4. For any form ϕ, we want d(dϕ) = 0.

Graded-Leibniz property may seem odd, but consider the following situation: let ϕ and ψ be one-forms, we
better get the same answer if we compute d(ϕ ∧ ψ) or d(−ψ ∧ ϕ).

xExercise 1. Prove, without the graded Leibniz property, d(ϕ ∧ ψ) ̸= d(−ψ ∧ ϕ).

42. Regarding the d(dϕ) = 0 property, the analogy which should spring to mind is that

df ∼ gradient of f,

and
d(1-form) ∼ curl,

so
d(df) ∼ ∇× (∇f) = 0. (1.45)

43. Computing Exterior Derivative. How do we calculate the exterior derivative of a k-form ω?
(Well, if it’s a k-form on Rk, it’s zero, so let’s assume we’re on Rn for n > k.)

1. Write ϕ as a linear combination of monomials like f dxi1 ∧ · · · ∧ dxik

2. Use linearity to do the calculation term-by-term.
3. For each term, it looks like: d(f dxi1 ∧ · · · ∧ dxik) = df ∧ (dxi1 ∧ · · · ∧ dxik). (Since the other term

from graded Leibniz is (−1)0f ∧ d(dxi1 ∧ · · · ∧ dxik) = f ∧ (0) = 0.)

Exercises

1. Let v = (−2, 0, 4), p = (2, 1,−3). Working directly from the definition, compute the directional
derivative vp[f ] where
(a) f = z/y
(b) f = ln(1 + x2) tan(z).

2. Let V = −z2U1 + cos(xy)U3, f = x2y5z3, g = (x/y) sin(z). Compute:
(a) V [f ]
(b) V [fg].

3. Prove or find a counter-example: if V , W are vector fields on Rn such that every f : Rn → R we have
V [f ] =W [f ], then V =W .

Homework on Frame Fields
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Mathematics 116 — Differential Geometry
Spring 2008
Derek Wise

Define two vector fields on R2 by

E1 =
1

4
U1 +

(x1)2

4
U2

E2 = U2

(Note: the superscript “1” is just a label, indicating the first of the coordinate functions x1,
x2 of R2. The superscript outside parentheses indicates the square of the coordinate.)
1. Draw the vector fields E1, E2

2. Recall that a frame field on Rn is a list of n smooth vector fields such that at each
point they give a basis of the tangent space. Show E1, E2 is a frame field on R2.

3. Frame fields in differential geometry play essentially the same role that bases do in linear
algebra. For example, given a vector field V = v1U1 + v2U2 (where v1, v2 are smooth
functions), defined in terms of the natural frame field, we can rewrite V in terms of the
frame field E1, E2. Do it!

4. The 1-forms dxi on Rn are called dual to the vector fields Uj in the natural frame field,
meaning that dxi[Uj ] = δij . That is, dxi[Uj ] equals the constant function 1 if i = j,

or the constant function 0 if i ̸= j. Find a pair of 1-forms θ1, θ2 that are dual to the
vector fields E1, E2. That is, θ

1, θ2 should satisfy θi[Ej ] = δij . [Hint: write the θi as a

linear combination of dxi and solve for the coefficients.]
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2 Differential Geometry of Curves in R3 (or Rn)

44. The idea is that we have introduced the basic gadgetry of differential geometry, but in the setting of
Rn. Now we will consider curves in Rn, and use the gadgetry we’ve introduced to study properties of curves
(for example, how to vector fields on a curve, and what do they tell us). This appears in classical mechanics
(especially Lagrangian and Hamiltonian mechanics).

45. Definition. An “Unparametrized Curve” in R3 is a “one-dimensional subset” of points.

46. Example. The doodle below is a closed unparametrized curve — “closed” meaning it forms a “loop”
(eventually):

47. Example. Here is a happy open unparametrized curve — “open” meaning it is “not closed”:

48. Definition. Let I = (a, b) be an open interval (it is possible a = −∞, or b = +∞, or both). We define
a “(Parametrized) Curve” in R3 to be a smooth function α : I → R3

48.1. Remark. Henceforth, we will reserve the term “curve” for an unparametrized curve, and “path” for a
parametrized curve.

• “Path” = “Parametrized Curve”
• “Curve” = “Unparametrized Curve”.

In fact, almost always we care about curves, so unless otherwise stated, all curves are parametrized.

49. Example. Consider the “Elliptic Helix”, a parametrized curve α(t) = (a cos(t), b sin(t), ct) where
a, b, c ∈ R are positive constants, and t ∈ [0,+∞) looks like:

z

x

y
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We could consider a different parametrization of the same curve, like β(t) = (a cos(3t), b sin(3t), 3ct) = α(3t).
How do we know this is the same curve? Well, one way is to establish a bijection of points β(t/3) = α(t) for
all t ∈ [0,∞).

50. Definition. Let α : I → R3 be a path with components (α1, α2, α3). The “Velocity” of α at time
t ∈ I is the tangent vector

α′(t) =

(
dα(t)

dt

)
α(t)

∈ Tα(t)R3 (2.1a)

at base point α(t), whose components are

α′(t) =

(
dα1(t)

dt
,
dα2(t)

dt
,
dα3(t)

dt

)
. (2.1b)

50.1. Remark. The velocity defines a sort of vector field, but defined only on the curve and not all of R3.

51. Example. For the elliptical helix, α(t) = (a cos(t), b sin(t), ct) for t ∈ R, we have its velocity be

α′(t) = (−a sin(t), b cos(t), c)α(t). (2.2)

52. Example. Let p,v ∈ R3 be constants. Consider the curve β(t) = p+ tv. This is the straight line with
initial position β(0) = p and initial velocity β′(0) = vp. We’ve used this before when we’ve worked with the
directional derivative of f : R3 → R,

vp[f ] =
d

dt
f(p+ tv)

∣∣∣∣
t=0

. (2.3)

In fact, we could use any curve α with α(0) = p and α′(0) = vp to define vp[f ].

53. Theorem. Let vp ∈ TpR3, I be an interval containing zero, and let α : I → R3 be such that α(0) = p
and α′(0) = vp. Then

vp[f ] =
d

dt
f(α(t))

∣∣∣∣
t=0

. (2.4)

Proof. We know α′(0) = vp. So, let us calculation

vp[f ]

=
∣∣ definition of directional derivative (a)

d
dtf(p+ tv)

∣∣
t=0

=
∣∣ since α(t) = p+ tv (b)

d
dtf(α(t))

∣∣
t=0

=
∣∣ chain rule (c)∑
j
∂f
∂xj

(α(t))dα
j(t)
dt

∣∣∣
t=0

=
∣∣ since dαj(0)/dt = vj , α(0) = p (d)∑
j
∂f
∂xj

(p)vj

On the other hand, repeating the last three steps with

d

dt
f(α(t))

∣∣∣∣
t=0

gives the same result since the only facts used were α(0) = p, α′(0) = vp.
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54. Corollary. For any curve α and smooth function f : R3 → R, we have

α′(t)[f ] =
d

ds
f(α(s))

∣∣∣∣
s=t

. (2.5)

That is to say, the directional derivative of f with respect to the velocity vector field is the rate of change of
f as we move along the curve α.

2.1 Metric, Distances, Angles

55. In linear algebra, the key geometric tool is the concept of the inner product (“dot product”). Any
vector space with an inner product automatically gets notations of:

• magnitude of vectors ∥v∥ =
√
⟨v,v⟩, and

• angle between vectors cos(θ) = ⟨v,w⟩/(∥v∥ · ∥w∥).
In differential geometry, we have not just one vector space, but a vector space at each point (e.g., for each
p ∈ R3, we have TpR3). We can, in principle, put a different inner product at each of these tangent spaces.
In other words, at each point we may have a different notion of magnitude and angle.

56. Definition. An assignment of an inner product to each TpR3 (varying smoothly with p ∈ R3) is called
a “Riemannian metric”.

57. Example. For now, we will be sticking with the usual Riemannian metric on R3 given by

⟨vp,wp⟩p︸ ︷︷ ︸
inner product on TpR3

=

usual dot product︷ ︸︸ ︷
v ·w (2.6)

58. Example. Suppose we have two curves α : I → Rn and β : J → Rn which intersects at a point

p = α(s0) = β(t0). (2.7)

p•

We can define the angle between α and β at p by

cos(θ) =
⟨α′(s0), β

′(t0)⟩
∥α′(s0)∥ · ∥β′(t0)∥

. (2.8)

This breaks down if ∥β′(t0)∥ = 0 or ∥α′(s0)∥ = 0. For this reason, we usually work with “Regular Curves”
which always have nonzero velocity.

59. Definition. We call a curve α : I → Rn “Regular” if its velocity is never zero α′(t) ̸= 0 for all t ∈ I.
If α is not regular, then we call it “Singular”.

60. Example. An example of a singular curve would be one with a cusp, for example, x2 − y5 = 0
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61. Measuring Distance. The metric also allows us to measure distances along regular curves. The
distance is found by integrating the “Speed” or magnitude of velocity. Let α : (a, b) → Rn be a regular
curve, then ∫ b

a

∥α′(t)∥ dt. (2.9)

A key fact in this for this to be well-defined, we need to check it’s independent of (regular) parametrization.
That is to say, suppose we have

t = t(s) (2.10)

where s is another parameter, and define a “Reparametrization” of the curve by

β(s) = α(t(s)) (2.11)

where
dt(s)

ds
> 0 (2.12)

for all s ∈ J , so β is regular. Suppose J = (a′, b′). Then we have to integrate from a′ to b′ of the magnitude
of the velocity of β and demand they be equal∫ b′

a′
∥β′(s)∥ ds =

∫ b

a

∥α′(t)∥dt. (2.13)

We see, actually, we could just unfold the definition of β and use the chain rule,∫ b′

a′
∥β′(s)∥ ds =

∫ b′

a′
∥α′(t(s))

dt(s)

ds
∥ ds. (2.14)

Then using substitution rule for calculus on the right-hand side∫ b′

a′
∥α′(t(s))

dt(s)

ds
∥ ds =

∫ b

a

∥α′(t)∥dt. (2.15)

We have a particularly useful parametrization:

62. Proposition. Any regular curve α has a reparametrization β such that

∥β′(s)∥ = 1 (2.16)

for all s, called the “Unit Speed Reparametrization”.

Proof. Let α : I → R3 be our given curve. Suppose I = (a, b). Define the distance function

s(t) =

∫ t

a

∥α′(t)∥ dt. (2.17)

Since ∥α′(t)∥ ≠ 0 (and speed is never negative, it follows the speed is always positive), hence s is strictly
increasing. In particular, this means

ds

dt
> 0. (2.18)

So far, so good.
This also means s(t) has an inverse. So we can write t as a function of s,

t = t(s). (2.19)

Then we can reparametrize by letting
β(s) = α(t(s)), (2.20)
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and

∥β′(s)∥
=

∣∣ chain rule (a)∥∥∥∥α′(t(s))
dt(s)

ds

∥∥∥∥
=

∣∣ since dt(s)/ds > 0 always (b)

∥α′(t(s))∥ dt(s)
ds

=
∣∣ differentiating under the integral sign (c)

ds

dt

dt

ds
=

∣∣ basic calculus (d)

1.

Hence β has unit-speed.

62.1. Remark. For any regular curve, we get a vector field on the curve called the “Unit Tangent Field”
defined by taking the velocity of a unit speed reparametrization.

2.2 Frenet Frame

63. The basic idea is to study a curve by using a different frame at each point, suitably chosen at each
point. Towards that end, we should probably make rigorous what we mean by a “vector field along a curve”
and whatnot.

64. Definition. Let α : I → R3 be a (regular) curve. A “Vector Field on α” Y is an assignment of a
tangent vector Y (t) ∈ Tα(t)R3 for each t ∈ I.

An “(Orthonormal) Frame Field on a curve” α is a triple of vector fields such that for each t ∈ I
they restrict to an (orthonormal) basis of Tα(t)R3.

We assume, without loss of generality, that frame fields are orthonormal unless explicitly stated otherwise.

65. For now, we restrict attention to unit speed curves.
We have constructed on natural unit vector field on β:

T (s) = β′(s) ∈ Tβ(s)R3. (2.21)

We call T (S) the “Unit Tangent”. To get a frame field, we need two more vector fields on β.
First note,

T (s) · T (s) = 1, (2.22a)

because T (s) is a unit tangent vector. It follows then that

d

ds
(T (s) · T (s)) = dT (s)

ds
· T (s) + T (s) · dT (s)

ds
(2.22b)

= 0, (2.22c)

and in particular

T (s) · T ′(s) = 0. (2.22d)

If T ′(s) ̸= 0, then define the “Principal Normal” field on β as

N(s) :=
T ′(s)

∥T ′(s)∥
. (2.23)
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We see (since the right-hand side is a vector divided by its norm) N(s) is a unit vector field, i.e., for any s
we have

∥N(s)∥ = 1, (2.24)

and it is orthogonal to T (s) by construction.
Now, to obtain one last unit vector field on β, we can just take the cross-product of T and N to obtain

the “Binormal Field” on β as
B(s) := T (s)×N(s). (2.25)

66. Definition. Let β be a unit speed curve, then we define the “Curvature” of β as

κ(s) := ∥T ′(s)∥. (2.26)

66.1. Remark. If the curvature of β is zero, we get nonunique frames from the construction we have just
sketched.

67. Definition. Along a regular curve β, we define the “Frenet Frame” to consist of T (s) := β′(s),
N(s) := T ′(s)/∥T ′(s)∥, and B(s) := T (s)×N(s).

68. For any regular curve with unit-speed parametrization β, we know that T ′(s) is proportional to N(s).
We claim that B′(s) is also proportional to N(s). How can we see this? We will prove B′(s) is orthogonal
to both B(s) and T (s), which means it’s either zero or directly proportional to the remaining orthonormal
unit vector N(s).

First, observe that B′(s) is orthogonal to B(s). How? We see from it being a unit vector,

B(s) ·B(s) = 1, (2.27a)

taking the derivative with respect to s of both sides,

d

ds
(B(s) ·B(s)) = 0, (2.27b)

the left-hand side expands according to the product rule as

d

ds
(B(s) ·B(s)) =

dB(s)

ds
·B(s) +B(s) · dB(s)

ds
. (2.27c)

Thanks to commutativity of the dot product, the right hand side simplifies to:

d

ds
(B(s) ·B(s)) = 2

dB(s)

ds
·B(s). (2.27d)

Thus we find

2
dB(s)

ds
·B(s) = 0 =⇒ dB(s)

ds
·B(s) = 0. (2.27e)

Thus we conclude B′(s) is orthogonal to B(s).
Our second step is to show B′(s) is orthogonal to T (s). We have

d

ds
(B · T ) = B′(s) · T (s) +B(s) · T ′(s). (2.28a)

Now since
T ′(s) = κ(s)N(s), (2.28b)

we find
B′(s) · T (s) +B(s) · T ′(s) = B′(s) · T (s) +B(s) · (κ(s)N(s)). (2.28c)

But since
B(s) · (κ(s)N(s)) = κ(s)(B(s) ·N(s)) = κ(s)(0) = 0, (2.28d)
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we find
B′(s) · T (s) +B(s) · T ′(s) = B′(s) · T (s). (2.28e)

But remember, B(s) · T (s) = (T (s) × N(s)) · T (s) using the definition of the binormal field, and recalling
the basic property of the cross product (it produces a vector orthogonal to its factors), we find

B(s) · T (s) = 0. (2.28f)

Therefore its derivative with respect to s vanishes, and we find

B′(s) · T (s) = 0. (2.28g)

Hence B′(s) is orthogonal to T (s).
Since B′(s) is orthogonal to both T (s) and B(s), we conclude it must be directly proportional to N(s):

B′(s) = −τ(s)N(s) (2.29)

where “−τ(s)” is the constant of proportionality. We call τ(s) the “Torsion” of the curve β.

69. Theorem (The Frenet Formulas). Given a unit speed curve β, whose curvature κ is nonvanishing and
whose torsion is τ , we have the “Frenet Formulas”:

T ′(s) = κ(s)N(s) (2.30a)

N ′(s) = −κ(s)T (s) + τ(s)B(s) (2.30b)

B′(s) = −τ(s)N(s), (2.30c)

or, using matrix multiplication,T ′(s)
N ′(s)
B′(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

T (s)N(s)
B(s)

 . (2.31)

Proof. We know the first and third formulas already, so we just need to prove the second formula. Since the
Frenet field forms an orthonormal basis, we know

N ′(s) = a(s)T (s) + b(s)N(s) + c(s)B(s). (2.32)

We just need to determine the coefficients. We take the inner product of both sides with T and B.
We know that

N ′(s) · T (s) = a(s). (2.33a)

We also know N(s) and T (s) are orthonormal vector, in particular,

N(s) · T (s) = 0. (2.33b)

But taking the derivative of both sides, we find

d

ds
(N(s) · T (s)) = N ′(s) · T (s) +N(s) · T ′(s). (2.33c)

We can use the Frenet formula T ′(s) = κ(s)N(s) to rewrite the right-hand side

N ′(s) · T (s) +N(s) · T ′(s) = N ′(s) · T (s) +N(s) · (κ(s)N(s) (2.33d)

= N ′(s) · T (s) + κ(s), (2.33e)
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and further, since N ′(s) · T (s) = a(s), we conclude

N ′(s) · T (s) +N(s) · T ′(s) = N ′(s) · T (s) + κ(s)

= a(s) + κ(s). (2.33f)

Returning to our original statement, we find

d

ds
(N(s) · T (s)) = a(s) + κ(s) = 0. (2.33g)

Hence, in particular

a(s) = −κ(s). (2.33h)

We know b(s) = 0 since

N(s) ·N(s) = 1 =⇒ d

ds
(N(s) ·N(s)) = 0. (2.34a)

This gives us 2b(s) = 0, which implies

b(s) = 0. (2.34b)

Now for the last coefficient. Very similar to the first, since N(s) · B(s) = 0 (thanks to their being
orthonormal vectors) we find their derivative with respect to s is zero. (We will use the fact thatN(s)·B′(s) =
0.) But we find

d

ds
(N(s) ·B(s)) = N ′(s) ·B(s) +N(s) ·B′(s) (2.35a)

= N ′(s) ·B(s) (2.35b)

= τ(s) (2.35c)

hence
c(s) = τ(s). (2.35d)

This proves the remaining Frenet formula.

70. Proposition. A unit speed curve is a straight line if and only if its curvature vanishes κ(s) = 0.

Our proof will consist of two direct proofs, one in the forward direction (straight line implies zero curva-
ture), the other in the backwards direction (zero curvature implies straight line).

Proof. Let β(s) be a unit speed curve.
( =⇒ ) Assume β is a straight line, then

β(s) = p+ sv (2.36)

for some p and (unit) vector v. So

κ(s) = ∥T ′(s)∥ (2.37a)

= ∥β′′(s)∥ (2.37b)

= ∥0∥ = 0. (2.37c)

Hence straight lines have zero curvature.
(⇐= ) Conversely, assume for all s we have κ(s) = 0. Write out the components of the curve as

β(s) = (β1(s), β2(s), β3(s)). (2.38a)
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We find
β′′(s) = (β′′

1 (s), β
′′
2 (s), β

′′
3 (s)). (2.38b)

For the curvature to be zero everywhere, we need the second derivative of each component to vanish, i.e.,
for each s we have

β′′
j (s) = 0 (2.38c)

for j = 1, 2, 3. We integrate this equation twice to find

βj(s) = pj + svj (2.38d)

for some constants of integration vj , pj . This means

β(s) = p+ sv, (2.38e)

i.e., that β is a straight line.

71. Proposition. A unit speed curve β : I → R3 with positive curvature κ(s) > 0 has vanishing torsion if
and only if β is a “Plane Curve” (i.e., its image lies in some plane in R3).

Proof. ( =⇒ ) Assume β is a plane curve, i.e., it lies in the plane through p ∈ R3 with unit normal vector
n. For all s, we have

n · (β(s)− p) = 0. (2.39a)

By differentiating with respect to s (and remembering p and n are constants), we find

n · β′(s) = 0 =⇒ n · T (s) = 0. (2.39b)

Differentiating once more, we find

n · β′′(s) = 0 =⇒ n ·N(s) = 0. (2.39c)

But we assumed n is a unit vector (in particular, it’s nonzero) and the Frenet frame is a collection of
orthonormal vectors. This forces us to conclude,

n = ±B(s). (2.39d)

In particular, B(s) is constant. So
B′(s) = 0, (2.39e)

and by the Frenet formulas
B′(s) = −τ(s)N(s) = 0. (2.39f)

Since N(s) ̸= 0 we conclude,

τ(s) = 0. (2.39g)

This is the first half of the proof.
(⇐= ) Suppose τ(s) = 0. Then by the Frenet formulas, B′(s) = 0. In particular, B(s) is a constant unit

vector. Pick some s0 ∈ I, and define
f(s) = (β(s)− β(s0)) ·B. (2.40)

We want to prove f(s) = 0 for all s ∈ I.
The first step is to consider its derivative, and since B is constant (with respect to s), we find:

f ′(s) = (β′(s)− 0) ·B = T (s) ·B. (2.41)

But we know T (s) ·B = 0 since they are orthonormal vectors. Hence we conclude

f ′(s) = 0. (2.42)
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This just tells us that f(s) is a constant.
But we also know that

f(s0) = 0. (2.43)

Hence we conclude, for all s ∈ I, that:
f(s) = 0. (2.44)

This is precisely the description of a plane, {x ∈ R3 | (x− p) ·B = 0}.

72. Example (Frenet field for circular helix). Let

α(t) = (a cos(t), a sin(t), bt) (2.45)

where a > 0, b > 0 are constants. Find the Frenet field for this curve.
First, we need to verify the curve is a unit-speed curve (and, if not, find its unit-speed reparamtrization).

We find

s(t) =

∫ t

0

∥α′(u)∥du (2.46a)

=

∫ t

0

√
a2 + b2 du (2.46b)

= t
√
a2 + b2. (2.46c)

Then we can invert this to find t as a function of s:

t(s) =
s√

a2 + b2
. (2.46d)

For simplicity, we will define

c =
√
a2 + b2, (2.46e)

so
t(s) = s/c. (2.46f)

Then we find the unit-speed parametrization,

β(s) = α(t(s)) = (a cos(s/c), a sin(s/c), bs/c). (2.47)

OK, the zeroeth step is complete.
Now we may use the Frenet formulas to get the curvature and torsion. The unit tangent vector is

T (s) := β′(s) =
1

c
(−a sin(s/c), a cos(s/c), b). (2.48)

Now we find its derivative

T ′(s) =
−a
c2

(cos(s/c), sin(s/c), 0), (2.49)

and the curvature is,

κ(s) := ∥T (s)∥ = a

c2
. (2.50)

That is to say, the curvature is constant.
The next Frenet formulas give us

N(s) :=
T ′(s)

κ(s)
= (− cos(s/c),− sin(s, c), 0). (2.51)
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The binormal is obtained from the cross-product,

B(s) := N(s)× T (s) = 1

c
(b sin(s/c),−b cos(s/c), a). (2.52)

The derivative of B(s) with respect to s gives us

B′(s) =
b

c2
(cos(s/c), sin(s/c), 0), (2.53)

but we know using the Frenet formula B′(s) = −τ(s)N(s), and inspection of terms forces us to conclude,

τ(s) =
−b
c2
. (2.54)

The torsion is also constant!
In fact, any curve with constant [nonzero] curvature and nonzero torsion is either a helix (τ ̸= 0) or a

degenerate helix (a.k.a., a circle).

2.3 Frenet Approximation at a Point

73. Consider the unit-speed curve β. Expand this in a Taylor series, e.g., about zero. We need to know
several values:

β′(0) := T (0) = T0 (2.55a)

β′′(0) := κ(0)N(0) = κ0N0 (2.55b)

β′′′(0) = (κN)′(0) = κ′(0)N0 + κ0(−κ0T0 + τ0B0). (2.55c)

Then the Taylor series expansion yields

β(s) ≈ β0 + sβ′(0) +
s2

2!
β′′(0) +

s3

3!
β′′′(0). (2.56)

We find

β(s) ≈ β0 + sβ′(0) +
s2

2!
β′′(0) +

s3

3!
β′′′(0) (2.57a)

= β0 + sT0 +
s2

2
(κ(0)N(0) = κ0N0) +

s3

3!
(κ′(0)N0 + κ0(−κ0T0 + τ0B0)) (2.57b)

= β0 +

(
s− κ20s

3

3!

)
T0 +

(
κ0
2
s2 + κ′(0)

s3

3!

)
N0 +

(
τ0κ0

s3

3!

)
B0. (2.57c)

74. We can truncate this series to be scalar multiples of the Frenet vectors at β(0), with the following
interpretation:

β(s) ≈

 Tangent Parabola
in Osculating Plane

︷ ︸︸ ︷
β0 + T0s+N0s

2κ0
2

+B0τ0κ0
s3

3!

≈
(

Linear
Approximation

)
+

How Fast the Curve
Deviates From
Tangent Line

+

 How fast the curve
moves out of

the osculating plane


(2.58)
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Exercises

1. Consider the hyperbolic helix, α(t) = (cosh(t), sinh(t), t). Compute its arclength s(t) and find its
unit-speed reparametrization.

2. Consider the curve α(t) = (1/(1+t3), t3, ln(1+t2)) on I = (0,∞). It passes through p = (1/4, 3, ln(1+
32/3)) and q = (1/9, 8, ln(5)). Compute the arclength of the curve between these points.

3. Let α : I → Rn be a curve. Suppose β1, β2 are two unit-speed reparametrizations of α. Prove or find
a counter-example: there exists an s0 ∈ R such that for any s ∈ (0, ℓ(α)) we have β1(s) = β2(s + s0)
(where ℓ(α) is the arclength of α).

4. Prove or find a counter-example: given a unit-speed curve β, consider the vector field A = τT + κB
on β. The Frenet formulas become:

T ′ = A× T
B′ = A×B
N ′ = A×N.

5. Prove or find a counter-example: if α : I → Rn is any curve, and c ∈ I is some [arbitrary but fixed]

value, then (a) σ(t) =
∫ t
c
∥α′(u)∥ du is a perfectly good distance function, (b) which could be inverted

to t = t(σ), and (c) β(σ) = α(t(σ)) is a unit-speed parametrization. [A counter-example would be a
curve α for which at least one of these three claims fails to hold.]

6. The unit-speed parametrization of the circle may be written as

γ(s) = c+ r cos(s/r) e1 + r sin(s/r) e2 (2.59)

where ei are orthonormal unit vectors ei · ej = δij .
If β : Ī → R3 is a unit speed curve with (assuming 0 ∈ Ī) κ(0) > 0, then there exists exactly one circle
γ which approximates β near β(0) in the sense that

γ(0) = β(0), γ′(0) = β′(0), γ′′(0) = β′′(0). (2.60)

Show that γ lies in the osculating plane of β at β(0) and find its center c and radius r. The circle is
called the “Osculating Circle”, and c is called the “Center of Curvature” of β at β(0). (The
same result holds if we replace 0 by any other s0 ∈ Ī.)
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2.4 Frenet Data for Arbitrary Curves

75. We defined the Frenet field for unit-speed curves. But we want the Frenet data T , N , B, τ , κ to be
independent of our choice of parametrization. The trick: given some regular curve α : I → R3, let ᾱ : Ī → R3

be its unit-speed parametrization.

α
ᾱ

( )( )• •I Ī
t s

related by strictly
increasing function

s = s(t)

Rn

•
α(t) = ᾱ(s)

We define the Frenet data of α to be the Frenet data of ᾱ. The Frenet data of α are unbarred quantities,
the Frenet data of ᾱ are barred quantities. We define them by:

T (t) = T̄ (s) = T̄ (s(t)) (2.61a)

N(t) = N̄(s) (2.61b)

B(t) = B̄(s) (2.61c)

κ(t) = κ̄(s) (2.61d)

τ(t) = τ̄(s) (2.61e)

In principle we can find ᾱ and compute its Frenet data, but in practice this is usually impossible (analytically)
because we must do two things:

1. calculate s(t) =

∫ t

t0

∥α′(u)∥du,

2. invert this to get t = t(s).
Both are hard, sometimes impossible. We need a better way to calculate these things directly.

76. Unit Tangent. We find by direct calculation

T (t) = T̄ (s) = ᾱ′(s) (2.62a)

=
d

ds
α(t(s)) (2.62b)

= α′(t)
dt

ds
. (2.62c)

But
ds

dt
= ∥α′(t)∥, (2.63)

so

T (t) =
α′(t)

∥α′(t)∥
. (2.64)
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77. Curvature. We compute directly,

κ(t) = κ̄(s) :=

∥∥∥∥ d

ds
T̄ (s)

∥∥∥∥ (2.65a)

=

∥∥∥∥ d

ds
T (t)

∥∥∥∥ (2.65b)

=

∥∥∥∥T ′(t)
dt

ds

∥∥∥∥ (2.65c)

=
∥T ′(t)∥
∥α′(t)∥

(2.65d)

78. Principal Normal. We find, letting v(t) = ∥α′(t)∥,

N(t) = N̄(s) =
T̄ ′(s)

κ̄(s)
=
T ′(t)/v(t)

κ(t)
=

T ′(t)

∥T ′(t)∥
. (2.66)

This matches intuition of N(t) ∝ T ′(t).

79. Binormal. Again, direct computation,

B(t) = B̄(s) = T̄ (s)× N̄(s) = T (t)×N(t). (2.67)

This matches intuition of the binormal as cross-product of T and N .

80. Torsion. We know
B̄′(s) = −τ̄(s)N̄(s) (2.68)

and so, letting v(t) = ∥α′(t)∥,
d

ds
B(t) = −τ(t)v(t)N(t). (2.69)

To summarize our results, we have this handy theorem:

81. Theorem. If α : I → R33 is a regular curve with positive curvature, then up to some factor v(t) =
∥α′(t)∥ we have,

T ′(t) = κ(t)v(t)N(t) (2.70a)

N ′(t) = −κ(t)v(t)T (t) + τ(t)v(t)B(t) (2.70b)

B′(t) = −τ(t)v(t)N(t) (2.70c)

Or, using matrices, T ′(t)
N ′(t)
B′(t)

 =

 0 κ(t)v(t) 0
−κ(t)v(t) 0 τ(t)v(t)

0 −τ(t)v(t) 0

T (t)N(t)
B(t)

 . (2.71)

82. Any vector field Y on a regular curve α could be written as a linear combination of Frenet vector fields:

Y (t) = f(t)T (t) + g(t)N(t) + h(t)B(t). (2.72)

We find its derivative:

Y ′(t) = f ′T + fT ′ + g′N + gN ′ + h′B + hB′ (2.73a)

= f ′T + fκvN + g′N + g(t)(−κvT + τvB) + h′B + h(t)(−τvN) (2.73b)

= (f ′ − κvg)T + (fκv + g′ − τvh)N + (gτv + h′)B. (2.73c)
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If Y has Frenet components (f, g, h), then the Frenet components of Y ′(t) aref ′(t)g′(t)
h′(t)

+

 0 −κ(t)v(t) 0
κ(t)v(t) 0 −τ(t)v(t)

0 τ(t)v(t) 0

f(t)g(t)
h(t)

 = Y ′(t). (2.74)

Note: we use the transpose of the matrix from the Frenet formulas.

82.1. Remark. We should observe, when the frame we’re working with is not the natural frame field, then we
cannot write the derivative of a vector as just the derivatives of the components. We just saw this won’t work
with the Frenet frame. There was a correction term. This idea underlies the idea of covariant derivatives.

2.5 Covariant Differentiation

83. We want to differentiate vector fields. Suppose we are given some vector field W ∈ Vect(Rn) and a
tangent vector vp ∈ TpRn. There is one obvious way to differentiate W in the direction of vp: consider
expressing W using coordinates relative to the natural frame field,

W =
∑
j

wjUj , (2.75)

then we just consider

vp[W ] =
∑
j

vp[w
j ]Uj(p). (2.76)

Why not?
If we did this using a vector field V ∈ Vect(Rn) at each point p ∈ Rn, with vp = V (p), then we get

∑
j

V (p)[wj ]Uj(p) =

∑
j

V [wj ]Uj

 (p)

= ∇VW ∈ Vect(Rn).

(2.77)

So we get a vector field which is the natural covariant derivative of W with respect to the vector field V .

84. Definition. Let V,W ∈ Vect(Rn). We define the “Natural Covariant Derivative” of W with
respect to V is the vector field ∇VW defined by coordinates relative to the natural frame field,

∇VW =
∑
j

V [wj ]Uj , (2.78)

where W =
∑
j w

jUj are the coordinates of W relative to the natural frame field Uj .

84.1. Remark. This is really dependent on the natural frame field, but we would like a notion of covariant
differentiation independent of the choice of frame field.

85. Example. Let V =
∑
i v
iUi and W =

∑
j w

jUj be the vector fields expressed in coordinates relative
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to the natural frame field Uj . Then

∇VW =
∑
j

V [wj ]Uj (2.79a)

=
∑
j

(∑
i

viUi[w
j ]

)
Uj (2.79b)

=
∑
j

(∑
i

vi
∂wj

∂xi

)
Uj (2.79c)

=
∑
j

∑
i

vi
∂wj

∂xi︸ ︷︷ ︸
coordinates of ∇VW

Uj (2.79d)

86. Theorem (Essential properties of the covariant derivative). 1. ∇V (aY + bZ) = a∇V Y + b∇V Z
2. ∇fV+gWZ = f∇V Z + g∇WZ
3. ∇V (fZ) = V [f ]Z + f∇V Z
4. Metric compatibility: ∇V (Y · Z) = V [Y · Z] = (∇V Y ) · Z + Y · (∇V Z).

86.1. Remark. More generally, any operation ∇̄ taking two vector fields V × W → Z and produces a
third, which satisfies the first three properties is called a derivative operation. The fourth property is most
geometric, as it deals with angles.

87. Connection Forms. Suppose Ei are some orthonormal frame field on Rn, and we express W ∈
Vect(Rn) in coordinates relative to Ei:

W =
∑
i

wiEi. (2.80)

Let V ∈ Vect(Rn). Then we want to find the coordinates of ∇VW relative to Ei. We know, using linearity
and the Leibniz property,

∇VW =
∑
i

∇V (wiEi) =
∑
i

V [wi]Ei + wi∇V Ei. (2.81)

Now we just need to express ∇V Ei in coordinates relative to the frame field Ei. We expect

∇V Ei =
∑
j

cijEj , (2.82)

and hope the coefficients cij somehow depend on V . The usual notation is for these coefficients to be written
ωij , and we would have

∇V Ei =
∑
j

ωij [V ]Ej . (2.83)

We can get the components by applying ⟨−, Ek⟩ to both sides

⟨∇V Ei, Ek⟩ = ⟨
∑
j

ωij [V ]Ej , Ek⟩ (2.84a)

=
∑
j

ωij [V ]⟨Ej , Ek⟩ (2.84b)

=
∑
j

ωij [V ]δj,k = ωik[V ]. (2.84c)
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88. We can use metric compatibility to find

V [⟨Ei, Ej⟩] = ⟨∇V Ei, Ej⟩+ ⟨Ei,∇V Ej⟩ (2.85a)

= ωij [V ] + ωji[V ] (2.85b)

= V [δij ] = 0. (2.85c)

Hence in particular, we find the coefficients are antisymmetric,

ωij [V ] = −ωji[V ]. (2.86)

The diagonal components would satisfy ωii[V ] = −ωii[V ], which could only happen if ωii[V ] = 0.
When we look back on our system of equations, we find there are only n(n−1)/2 independent components

(thanks to antisymmetry).

89. For the case when n = 3, and we work in R3, we only needto know ω12[V ], ω13[V ], and ω23[V ]
for all V ∈ Vect(R3). In fact ωij [V ] depends linearly on V . Consider for arbitrary f, g ∈ C∞(R3) and
V,W ∈ Vect(R3),

ωij [fV + gW ] = ⟨∇fV+gWEi, Ej⟩ (2.87a)

= ⟨f∇V Ei + g∇WEi, Ej⟩ (2.87b)

= fωij [V ] + gωij [W ]. (2.87c)

These coefficients ωij take a vector field and produce functions. They are one-forms called “Connection
Forms”.

2.6 Worked Example

90. This is a long example. Consider working in spherical coordinates in R3. We want to find the spherical
frame field on R3 (or R3 minus the z axis). We say the order of the basis will be (ρ, θ, λ), as doodled below.

x

y

z

θ
λ

•{ ρ E1

E2
E3

We use the standard Riemannian metric, and the frame field vectors have the following interpretations:
• E1 is “up”
• E2 points “East”
• E3 points “North”.

Recall, the coordinates are given by

x = ρ cos(λ) cos(θ) (2.88a)

y = ρ cos(λ) sin(θ) (2.88b)

z = ρ sin(λ) (2.88c)
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91. How do we find E1? Well, we find a curve passing through (x, y, z) that specifically changes ρ→ ρ+ t,
then its initial velocity unit vector gives us the coefficients for E1 relative to the natural frame field. So

α(t) = (x(ρ+ t, θ, λ), y(ρ+ t, θ, λ), z(ρ+ t, θ, λ))

= ((ρ+ t) cos(λ) cos(θ), (ρ+ t) cos(λ) sin(θ), (ρ+ t) sin(λ).
(2.89)

Then we find
α′(t) = (cos(λ) cos(θ), cos(λ) sin(θ), sin(λ)). (2.90)

We observe this is a unit vector. Hence

E1 = α′(0) · (U1, U2, U3)

= cos(λ) cos(θ)U1 + cos(λ) sin(θ)U2 + sin(λ)U3.
(2.91)

92. For E2, a similar calculation with the curve

α(t) = (x(ρ, θ + t, λ), y(ρ, θ + t, λ), z(ρ, θ + t, λ))

= (ρ cos(λ) cos(θ + t), ρ cos(λ) sin(θ + t), ρ sin(λ)).
(2.92)

We find its velocity,
α′(t) = (−ρ cos(λ) sin(θ + t), ρ cos(λ) cos(θ + t), 0). (2.93)

We find its unit vector, since its length is

∥α′(t)∥ = ρ cos(λ) =⇒ α′(t)

∥α′(t)∥
= (− sin(θ), cos(θ), 0). (2.94)

Its unit vector gives us the coordinates for E2 relative to the natural frame field,

E2 = − sin(θ)U1 + cos(θ)U2 (2.95)

93. The last frame field we need the curve

α(t) = (x(ρ, θ, λ+ t), y(ρ, θ, λ+ t), z(ρ, θ, λ+ t)

= (ρ cos(λ+ t) cos(θ), ρ cos(λ+ t) sin(θ), ρ sin(λ+ t)).
(2.96)

The velocity vector for this curve,

α′(t) = (−ρ cos(θ) sin(λ+ t), −ρ sin(θ) sin(λ+ t), ρ cos(λ+ t)). (2.97)

Its unit vector
α′(t)

∥α′(t)∥
= (− cos(θ) sin(λ+ t), − sin(θ) sin(λ+ t), cos(λ+ t)). (2.98)

Hence we find
E3 = − sin(λ) cos(θ)U1 − sin(λ) sin(θ)U2 + cos(λ)U3. (2.99)

94. Frame field as partial derivatives. We emphasize, for clarity, that if we had a smooth function
f : R3 → R that

E1[f ] =
∂f

∂ρ
(2.100a)

E2[f ] =
∂f

∂θ
(2.100b)

E3[f ] =
∂f

∂λ
. (2.100c)

95. Connection Coefficients. Now that we have obtained our spherical frame field, we can compute
the connection coefficients ωij [V ] = ∇V Ei · Ej . We suppose V has local coordinates relative the Ei,

V =

3∑
j=1

vjEj . (2.101)

We have three connection components to find.
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96. We begin with ω12[V ] = ⟨∇V E1, E2⟩. We compute the directional derivative,

∇V E1 = ∇V (cos(λ) cos(θ)U1 + cos(λ) sin(θ)2 + sin(λ)U3) (2.102a)

= V [cos(λ) cos(θ)]U1 + V [cos(λ) sin(θ)]U2 + V [sin(λ)]U3. (2.102b)

Now, we use the expansion of V relative to the frame field Ej to find the first summand,

V [cos(λ) cos(θ)] = (v1∂ρ + v2∂θ + v3∂λ)(cos(λ) cos(θ)) (2.103a)

= v1∂ρ(cos(λ) cos(θ)) + v2∂θ(cos(λ) cos(θ)) + v3∂λ(cos(λ) cos(θ)) (2.103b)

= v1 · 0− v2 cos(λ) sin(θ)− v3 sin(λ) cos(θ). (2.103c)

Similarly, the second summand

V [cos(λ) sin(θ)] = (v1∂ρ + v2∂θ + v3∂λ)(cos(λ) sin(θ)) (2.104a)

= v2 cos(λ) cos(θ)− v3 sin(λ) sin(θ). (2.104b)

The last summand,

V [sin(λ)] = (v1∂ρ + v2∂θ + v3∂λ)(sin(λ)) (2.105a)

= v3 cos(λ). (2.105b)

Now, we combine everything together again,

∇V E1 = −
(
v2 cos(λ) sin(θ) + v3 sin(λ) cos(θ)

)
U1

+
(
v2 cos(λ) cos(θ)− v3 sin(λ) sin(θ)

)
U2 + v3 cos(λ)U3.

(2.106)

Now we take the dot product with E2 (recall Eq (2.95)). We find

E2 · ∇V E1 = (− sin(θ))(−1)
(
v2 cos(λ) sin(θ) + v3 sin(λ) cos(θ)

)
+ cos(θ)

(
v2 cos(λ) cos(θ)− v3 sin(λ) sin(θ)

) (2.107)

After much algebra, this simplifies to
E2 · ∇V E1 = v2 cos(λ). (2.108)

Thus we conclude ω12[V ] simply picks out the second component of V relative to the Ei frame field and
multiplies it by cos(λ), which is precisely what the one-form cos(λ) dθ does. We summarize this with the
result:

ω12 = cos(λ) dθ. (2.109)

At this point, the reader is invited to work through computing ω13, ω23 for themselves. We will include the
calculations later, so as to not tempt the reader.

97. Using the Covariant Derivative. If we want to know how fast the vector field W is changing
with respect to the vector field V , we take the covariant derivative ∇VW . Given vector fields V , W , we can
compute ∇VW relative to the frame field Ei by this method:

∇VW = ∇V

(∑
i

wiEi

)

=
... (exercise)

=
∑
i

V [wi]−
∑
j

ωij [V ]wj

Ei.

(2.110)
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More explicitly, w1

w2

w3

 7→
V [w1]
V [w2]
V [w3]

+

 0 −ω12[V ] −ω13[V ]
ω12[V ] 0 ω23[V ]
ω13[V ] −ω23[V ] 0

w1

w2

w3

 . (2.111)

Compare this to the Frenet situation,fg
h

 7→
f ′g′
h′

+

0 −κ 0
κ 0 −τ
0 τ 0

fg
h

 , (2.112)

where the (f ′, g′, h′) vector is really the directional derivative in the α(t) direction.

2.7 Cartan Structure Equations

(This is really important, but it’s hard to grasp until we see some examples.)

98. Given some orthonormal frame fields E1, E2, E3, we have two sets of associated one-forms:
• the coframe field θ1, θ2, θ3 defined by θi[Ej ] = δij .
• The connection forms ωij .

We may wonder how they are related to each other, and they’re related in a very important way called the
“Cartan Structure Equations”:

dθi =
∑
j

ωij ∧ θj (2.113a)

which describes a “torsion free” condition, and

dωij =
∑
k

ωik ∧ ωkj . (2.113b)

This latter equation is the most important one, it’s what will be generalized in differential geometry.

Exercises

1. For the curve α(t) = (t4,−2t2, 3t−1) for t > 0,
(a) Compute the Frenet data;
(b) Sketch the curve for 2 ≤ t ≤ 4 show T , N , B at t = 3;
(c) Find the limiting values of T , N , and B as t→ +∞ and t→ 0.

2. (O’Neill, 2.4#3) The curve α(t) = (t cos(t), t sin(t), t) lies on a double cone and passes through the
vertex at t = 0
(a) Find the Frenet data of α at t = 0;
(b) Sketch the curve for −2π ≤ t ≤ 2π, showing T , N , B at t = 0.

3. Let V = −z2U1 − 4xU2 + 5yU3, W = cos(xy)U1 + z2U2, compute the following:
(a) ∇VW
(b) ∇V V
(c) ∇V (zV − yW ).

4. Prove or find a counter-example: if W is a vector field with constant length ∥W∥ = constant, and if V
is any vector field, then the covariant derivative ∇VW is everywhere orthogonal to W .

5. Prove or find a counter-example: if Σ ⊂ Rn is a region containing a regular curve α : I → Rn (i.e.,
α(I) ⊂ Σ), and if W is a vector field defined on Σ, then the mapping t 7→W (α(t)) is a vector field on
α called the “Restriction” of W to α and denoted W |α. The claim: ∇α′(t)W = (W |α)′(t).
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3 Surfaces

99. What is a surface? Intuitively, it’s an “R2” subset of R3. What does that even mean?
A set should be two-dimensional if it can be built out of pieces that look like open sets of R2, i.e., with

two-dimensional patches of “fabric” we may “sew” together. Conceptually captured by this picture:

xR2

•
(u, v)

The map like the one above gives “coordinates” to each point on a surface. So a map like this is called a
coordinate patch.1

100. Possible Problems With Our Definition. We should pause a moment and ponder if our notion
of a surface is really well-defined, or if there are some problems with it. The main issues we should think
about:

1. The coordinates could be “degenerate”, meaning that different values of (u, v) correspond to the same
point on the surface.
Solution: We demand the coordinate patch be injective2 to avoid this problem.

2. Even if x is injective, it could behave badly in other ways and not define a smooth surface. For example,
the following “surfaces” are too “pointy” to be smooth:

Solution: Require that x be regular.

101. Definition. Given a map F : Rm → Rn (suppose m ≤ n), its “Tangent Map” at p ∈ Rm

F∗p : TpRm → TF (p)Rn

is defined as follows: given any vp ∈ TpRm, pick some curve α : I → Rm such that α(0) = p and α′(0) = vp.
Then define

F∗p(vp) =
d

dt
F
(
α(t)

)∣∣∣∣
t=0

. (3.1)

1This will be made precise shortly, but caution should be given: the literature is inconsistent on which way the arrow goes.
Some authors prefer taking the green patch of the surface, and mapping it to some subset of R2. It is a matter of convention,
and either choice is perfectly acceptable.

2Recall, a function f : X → Y is injective means for every x1, x2 ∈ X we have f(x1) = f(x2) implies x1 = x2.
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( )

F (p)
•

•p

F∗p(vp)

vp
α

F

F ◦ α

I

101.1. Remark. We should intuitively think of F∗p as “the best linear approximation to F at p”.

101.2. Remark. This definition does not depend on choice of the curve α.

102. Definition. A map F : Rm → Rn is “Regular” if for every p ∈ Rm we have F∗p be injective.

102.1. Remark. This is a good definition, because if α is a regular curve, and F is a regular map, then the
composition F ◦ α is a regular curve. Composing regular stuff together gives us something regular.

103. Definition. A “(Coordinate) Chart” in R3 is an injective regular map x : D → R3 where D ⊂ R2

is some open subset called the “Patch”.
Further, we call a chart “Proper” if x−1 : x(D)→ R2 is continuous.
We may abuse language, and refer to the D as the patch, and x as the chart or parametrization. Techni-

cally, the local coordinates refer to the components of the vector-valued function x−1 : x(D)→ D mapping
a patch of our surface to Euclidean space (the “space of parameters”).

103.1. Remark (Abuse of language). Again, just to reiterate, people mix up what they’re referring to when
using the terms “chart” and “patch”. Undoubtedly we will too.

103.2. Remark. We must stress the importance of a patch x : D → R3 being regular, which means for any
(u, v) ∈ D, the map

x∗ : T(u,v)R2 → Tx(u,v)R3 (3.2)

is injective.

103.3. Remark. “Proper” patches convey topological information.

103.4. Remark. The image of any coordinate patch gives an example of a surface.

104. Most surfaces cannot be covered by one coordinate patch. The famous example: any coordinates on
a sphere is degenerate around the poles. Consequently, we need to use a set of patches to define a surface.

105. Definition. Given a subset M ⊂ R3 and a point p ∈M , a “Neighborhood” of p is a set consisting
of all points in M whose Euclidean distance to p is less than ε, for some ε > 0 [fixed for the neighborhood].

106. Definition. A “Surface” in R3 is a subset M ⊂ R3 such that for each point p ∈ M there exists a
neighborhood N of p in M and a proper patch x : D → R3 such that N ⊂ x(D) ⊂M .
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x(
D
)

p

N

D
x

R2

M

106.1. Remark. We don’t want self-intersecting surfaces, we want to avoid the following doodle:

This is because there’s no way to have a neighborhood “near the intersection”. It would locally look like:

Why is this a problem?3 This is a neighborhood of some point on the intersection, say N(p). We would like
to find a chart x : D → R3 such that N(p) ⊂ x(D). But this is impossible, because x(D) couldn’t contain
an intersection (thanks to topology).

107. Determining if a Patch is Regular. How do we even determine if a patch is regular, anyways?
Well, if F : Rm → Rn were regular at p ∈ Rm, then F∗p is injective. We know from linear algebra this means
the dimension of the image equals the dimension of the domain, i.e.,

dim(TF (p)Rn) = dim(TpRm). (3.3)

This is equivalent to saying that the rank of F∗p is of maximal rank for every p ∈ Rm. In other words,
we know a patch x : D → R3 is regular if for each p ∈ D we have x∗p be of maximal rank. Our strategy
for checking this will be to find some frame field e1, e2 defined on D and some frame field E1, E2, E3 on
x(D) ⊂ R3. Then we will express x∗ as a 2× 3 matrix, and we could use row reduction to find the rank.

What we do is we consider the following diagram:

3It’s not Hausdorff, that’s the problem.
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x

u

v

e1

e2

E1

E2

E3

Consider a curve α : I → R2 such that α(0) = p and α′(0) = e1 — i.e., the curve points in the u-direction.
We compute x∗(e1) to get the components in the first column of the matrix representing x∗, and we find
another curve pointing in the e2 (i.e., in the v) direction to find the second column of the matrix of x∗.

We find,

x∗(e1) =
d

dt
x
(
α(t)

)∣∣∣∣
t=0

(3.4a)

=

(
∂x1

∂α1

dα1

dt
+
∂x1

∂α2

dα2

dt
,
∂x2

∂α1

dα1

dt
+
∂x2

∂α2

dα2

dt
,
∂x3

∂α1

dα1

dt
+
∂x3

∂α2

dα2

dt

)∣∣∣∣
t=0

(3.4b)

=

(
∂x1

∂u
,
∂x2

∂u
,
∂x3

∂u

)
=

3∑
j=1

∂xj

∂u
Ej =: xu. (3.4c)

Similarly, we find

x∗(e2) =

(
∂x1

∂v
,
∂x2

∂v
,
∂x3

∂v

)
=

3∑
j=1

∂xj

∂v
Ej =: xv. (3.5)

We call the quantities xu and xv “Partial Velocities”. Hence, if wp = (w1, w2)p ∈ TpR2, then

x∗

(
w1

w2

)
=


∂x1

∂u

∂x1

∂v
∂x2

∂u

∂x2

∂v
∂x3

∂u

∂x3

∂v


(
w1

w2

)
. (3.6)

Now that we have expressed x∗ as a matrix, we just need to check there are at least 2 linearly independent
rows, which can be done by row reduction. Enough humourless logic, let us look at some examples.

108. Example. Consider the unit sphere S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} in three-dimensions. We
have a path formed by “bending” the open unit disc D2 = {(x, y) ∈ R2 | x2 + y2 < 1}. More explicitly,

x : D2 → R3 (3.7a)

defined by

x(u, v) = (u, v,
√
1− u2 − v2). (3.7b)

This is just one possible patch, we could consider another by taking the third component to be−
√
1− u2 − v2,

and we can consider others by swapping the third component with either the first or second components.
Now, our patch is clearly injective. If you do not believe it, then just examine x(u1, v1) = x(u2, v2);

the first two components reads u1 = u2 and v1 = v2. It follows that (u1, v1) = (u2, v2) and moreover x is
injective.
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But is our patch regular? We can find the matrix of x∗ relative to the canonical frame fields, which reads

x∗ =

 1 0
0 1

stuff1 stuff2

 . (3.8)

Since the top 2×2 submatrix is the identity matrix, it follows that x∗ has rank 2. Hence our patch is regular.

108.1. Remark. This example is a special case of a more general fact: if we have a smooth function f : D → R,
and we consider its graph Γ(f) = {(x, y, f(x, y)) ∈ R3 | (x, y) ∈ D} (or more generally, for any D ⊂ Rn, we
have Γ(f) = {(x, f(x)) ∈ Rn+1 | x ∈ D}), then this graph is a patch of a surface.

Algebraic geometry generalizes this further, by studying the zero sets of functions {x ∈ Rn | f(x) = 0}.
These generalize the notion of surfaces. A lot of differential geometry is generalized in this manner, it’s very
deep and profound.

109. Example (Surface of revolution). Undergraduates are taught in integral calculus of a single variable
about a surface of revolution by taking a curve y = f(x), then sweeping it out around the x-axis, in the
sense that

y2 + z2 = f(x)2. (3.9)

This yields a parametrization in terms of x and θ. Our patch would be

x(x, θ) = (x, f(x) cos(θ), f(x) sin(θ)) . (3.10)

If f is a regular curve, then we have a regular surface.

110. What Patches Give Us. The basic idea for patches is that they let us transfer data on the surface
M to data (of various kinds) on the domain D ⊂ R2 where we know how to do calculus. What kinds of
things do patches give us?

1. “Local coordinates” on M . Grid lines in D are paths like α(t) = (u0, v0 + t) which pass through
the point (u0, v0). These induce grid lines on M by x ◦ α(t) = (u0, v0 + t). (Although these describe
grid lines of constant u0, we can form grid lines of constant v0 by examining (u0 + t, v0) for example.)

xR2

D

2. Convenient ways to get tangent vectors on M . We have regularity map basis vectors (frame
fields) to basis vectors (frame fields) by x∗p : TpR2 → Tx(p)M . Regularity guarantees we get a whole
tangent plane, not just a line.

xR2

D x(
p)

x∗p(vp)
••p

vp

3. “Local” frame fields on M . This is given to us by the partial velocities xu(u, v) and xv(u, v).
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4. Convenient ways to compute “the normal vector” to a surface. Since we have found
xu(u, v) and xv(u, v) are frame fields for the tangent vectors on the surface, we can consider their
cross product n = xu(u, v)× xv(u, v) which is normal to the surface. We can do this globally only for
“orientable” surfaces (e.g., not for the Möbius strip).

•
n

xv

xu

Exercises

Here are some review questions, to make sure you don’t forget too quickly what we learned from section 2.
(This is an experiment, let me know if you hate this technique. It probably won’t happen again in these
notes, though.)

1. Recall Parabolic coordinates — we have 0 ≤ u < ∞, 0 ≤ v < ∞, and 0 ≤ φ < 2π, and the Cartesian
coordinates are parametrized as

x = uv cos(φ) (3.11a)

y = uv sin(φ) (3.11b)

z =
1

2
(u2 − v2). (3.11c)

(a) Compute the Parabolic frame field E1, E2, E3

(b) Compute the connection forms for the parabolic frame field.
2. Let E1, E2, E3 constitute a frame field and W =

∑
j fjEj . Let V be an arbitrary vector field. Prove

or find a counter-example: the covariant derivative satisfies,

∇VW =
∑
j

(
V [fj ] +

∑
i

fiωij [V ]

)
Ej . (3.12)

3. Check the structure equations for the parabolic frame field.
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3.1 Calculus on a Surface

OK, we’re on the home stretch now. We’ve generalized calculus in Rn using the machinery of tangent vectors
and differential forms, talked about curves and surfaces. Now our goal is to figure out how to do calculus on
surfaces. Ready? Let’s go!

111. Our goal is to completely generalize what we know about calculus on R2 to any surface.
This means we need to define: tangent vectors, vector fields, frame fields, one-forms, differential forms,

smooth functions, covariant derivatives, etc., on a surface.4 We’ll use this to study various surfaces and
properties they have.

What’s most fundamental in mathematics is making the correct definitions.

f
Rn

M
R2 x

D

Figure 1: Intuition of a function f : M → Rn being smooth

112. Definition. Let M ⊂ R3 be a surface, f : M → Rn be some function on the surface. We say that f
is “Smooth” if, for every patch x : D →M (where D ⊂ R2 is open),

f ◦ x : D → Rn (3.13)

is smooth in the usual sense, i.e., f ◦ x ∈ C∞(D). This is schematically doodled in Figure 1.

f
Rn

M

R2
x

D

x−1

x−1 ◦ f

Figure 2: Intuition of a function f : Rn →M being smooth

113. Definition. Let M ⊂ R3 be a surface, f : Rn → M be a function to the surface. We call f “Differ-
entiable” if, for every patch x : D →M , the map

x−1 ◦ f : E → D, (3.14)

where E = f−1(x(D)) ⊂ Rn is the preimage of the patch under f , is a smooth (C∞) function. Note: we do
not require f(Rn) =M .

The intuition of this definition is doodled in Figure 2.
4The generalization to arbitrary manifolds will be simple.
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113.1. Remark. This requires a bit of explanation. Consider the preimage of x(D) under f , i.e., the set of
points x ∈ Rn which f maps into the image of the chart x(D); call this set E = {x ∈ Rn | f(x) ∈ (D)}.
We want this to be an open set for topological reasons (this makes f continuous, a necessary prerequisite
for derivatives). Now we could consider f |E : E →M by restricting f . We know its image will be within the
image of the chart, so we then take the preimage of f(E) ⊂ M under the chart x to produce the mapping
x−1 : f |E(E)→ D. But this is the same as considering the composition (x)−1 ◦ f |E : E → D. The restriction
of f to E has been purely a crutch, the preimage of x will restrict the composite function for us. So we arrive
at our definition.

113.2. Remark. As a quick check, we could consider M = R3 with x = id being the identity function.
Then f : Rn → R3 being differentiable is the same as f ∈ C∞(Rn,R3). This is good! Our definition of
differentiable functions to surfaces coincides with our pre-existing definition of differentiable multivariate
vector-valued functions.

114. Example. Let M ⊂ R3 be a surface, and consider a [smooth] path α : I → R3 such that the curve lies
on the surface α(I) ⊂ M . For any patch x : D → M , we could consider the interval J = α−1(x(D)) given
by the preimage of the curve which lies in x(D). The situation is as doodled below:

x

α

( ) )
J

I

x−1 ◦ α|J

D
M

Proving α is smooth on M amounts to proving, for every patch x : D → M such that x(D) contains some
part of the path, the restriction α|J is smooth in the preimage of the chart in the familiar way.

115. Smooth Functions Between Surfaces. Suppose now we have two surfaces M1 and M2. We can
construct a notion of a smooth function f : M1 →M2 between these surfaces. The solution is to cheat.

Given arbitrary patches x : D → M1 on M1 and y : E → M2 on M2, we have the situation as doodled
below:

f

x y

M1 M2

D E

Now we have to make sense of f . We first take the preimage of y(E) under f , which may or may not
intersect x(D) on M1. If it doesn’t, then we’re in the trivial situation, and everything works out fine. So
let’s examine the exciting case where f−1 (y(E))∩x(D) ̸= ∅. This gives us the etched region doodled below:
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f

x y

M1 M2

D E

f−1(y(E))

We can pull back f−1 (y(E)) to the patch D using the preimage of x, which produces the following situation
(with the hatched region indicating the x−1 ◦ f−1 preimage):

f

x x−1 y

M1 M2

D E

f−1(y(E))

It looks like we’re making this more complicated, doesn’t it? There is one thing we have not yet exploited:
we can move forward as well as backward. If we start with x|−1

f−1(E)(D) the portion of the patch which, when

charted onto M1 will be mapped by f to part of y(E), then move forward along these lines, we end up with
a subset

(f ◦ x)
(
x|−1
f−1(E)(D)

)
⊂ y(E). (3.15)

We can take its preimage under y to get a subset in E ⊂ R2. This gives us a mapping, however, from D to
E:

y−1 ◦ f ◦ x : D → E, (3.16)

which is a function where we can sensibly discuss smoothness and derivatives. In pictures, we get the
situation as follows:

f

x x−1 y

M1 M2

D E

f−1(y(E))

y−1 ◦ f ◦ x

The induced function is drawn with a dashed arrow, and it is the one we know how to determine if it’s
smooth or not (because it’s a function of an open subset in R2 to an open subset in R2). And if we do this
for every possible pair of patches on M1 and M2, we end up verifying f is smooth and differentiable.

More precisely, we have f ◦ x be smooth function to M2 in the sense of Definition 113 We also have
y−1 ◦ f be a smooth function on M1, in the sense of Definition 112. Since this is done for every possible
charts on M1 and M2, we conclude that f : M1 →M2 is smooth.
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Exercises

1. Partial velocities xu, xv are defined for an arbitrary mapping x : D ⊂ R2 → R3, so we can consider
the [real-valued] functions

E = xu · xu, F = xu · xv, G = xv · xv (3.17)

on D.
(a) Prove ∥xu × xv∥2 = EG− F 2.
(b) Prove x is regular if and only if EG− F 2 is never zero.

Homework: Stereographic Projection

Mathematics 116 — Differential Geometry
Spring 2008
Derek Wise

Stereographic projection gives a nice coordinate patch on the unit sphere x2+y2+z2 = 1.
It is defined by

x : R2 → R3

where x(u, v) is defined to be the unique point in R3 that lies both on the unit sphere and
the ray from (0, 0, 1) through (u, v, 0).

1. Derive an explicit formula for x(u, v). [Hint: use a parameterization of the line, and
solve for the time t when it passes through the unit sphere.]

2. Find the matrix of the tangent map x∗, relative to the natural frame fields on R2 and
R3.

3. Prove that x is a patch.
4. Show that x is conformal, meaning that it preserves angles. That is, given a pair of

tangent vectors wp, zp at the same point in R2, show that the angle between them
(defined by the dot product in R2) is the same as the angle between x∗(wp) and x∗(zp)
(defined by the dot product in R3).
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3.2 Vectors on Surfaces

116. We require x : D → R3 be smooth (C∞) and x−1 : D ← x(D) be continuous. We require an additional
property for the inverse to be differentiable.

117. Definition. Let M be a surface, let p ∈M be some point. We define the “Tangent Space” to p in
M , denoted TpM , is the set of all vectors vp ∈ TpR3 such that vp = α′(0) for some curve on the surface
α : I →M .

118. Base points are important. In R2, we often just ignored the point of tangency and pretended
that TpR2 and TqR2 are the same just by sliding p to q. But for general surfaces (of which R2 is just the
most boring example), we cannot do this. There is no way to slide TpM to TqM without embedding M
into R2.

•
•
q

p

119. Definition. A “Vector Field” V on a surface M is an assignment to each point p ∈ M a vector
V (p) ∈ TpM .

120. Originally, we defined the derivative of f in the direction of some tangent vector vp as

vp[f ] =
d

dt
f(p+ tv)

∣∣∣∣
t=0

. (3.18)

This captures the information of how much f changes in the direction of v (at base-point p). There’s a
problem generalizing this to a surface: it doesn’t work if f is defined only on M . Why not? Well, the line
p+ tv will leave the surface, and f is undefined off the surface, so we’re out of luck.

But later we proved, if α : I → Rn passes through p = α(0) and it has velocity vp = α′(0) there, then
we could define the directional derivative as:

vp[f ] =
d

dt
f(α(t))

∣∣∣∣
t=0

. (3.19)

So if α : I → M has initial position α(0) = p and initial velocity α′(0) = vp ∈ TpM , and if f : M → R is
smooth, then we can define the directional derivative of a function on our surface by

vp[f ] =
d

dt
f(α(t))

∣∣∣∣
t=0

. (3.20)

This is independent of the choice of such α.
If we do this at every point, we can differentiate functions with respect to vector fields using

V [f ](p) = V (p)[f ]. (3.21)

This works out perfectly.

120.1. Remark (Boring). This should be boring, because we defined things in a clever way. Generalizations
follow easily once we have the right definitions. So if you find this boring, good: it means you have a grasp
of the concepts underlying the definitions.
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3.3 Differential Forms on Surfaces

121. A one-form ϕ on M assigns to each point p ∈M a covector on TpM , i.e., a linear function

ϕp : TpM → R. (3.22)

The most important examples: let f : M → R be a smooth function, then df is a one-form given by

df [vp] = vp[f ], (3.23)

for every vp ∈ TpM . But let us see what the zoo of differential forms becomes on a surface.

122. Zero-Forms. The 0-forms are just smooth functions on M , i.e., functions like ϕ : M → R such
thatfor every patch x : D →M , the function ϕ : x : D → R is smooth.

123. One-Forms. The 1-forms are defined just like in Euclidean space. A “One-Form” ϕ is a linear
map at each point p ∈M taking tangent vectors to real numbers

ϕp : TpM → R (3.24)

in a linear way, and taking vector fields to functions

ϕ : Vect(M)→ C∞(M). (3.25)

Given a zero-form f , the differential df is the one-form given by

df [V ] = V [f ], (3.26)

for any vector field V ∈ Vect(M).

124. Two-Forms. Now we have something slightly different. But it tells us what 2-forms do. A 2-form
η on M is a map at each point p ∈ M that takes an ordered pair of tangent vectors and gives a number,
that is to say,

ηp : TpM × TpM → R (3.27)

such that
1. Antisymmetry: η(v,w) = −η(w,v)
2. Linearity in first slow: for any a, b ∈ R, η(au+ bv,w) = aη(u,w) + bη(v,w).

It’s easy to prove from these two properties that a 2-form is also linear in the second slot; that is to say, it’s
bilinear.

If we use η at every point, we get a mapping

η : Vect(M)×Vect(M)→ C∞(M). (3.28)

125. But. . . the wedge product? Earlier we defined 2-forms in terms of the formal wedge product.
Let us now endeavour to produce a definition of the wedge product for differential forms on a surface which
is consistent with how we defined 2-forms.

Let ϕ, ψ be two 1-forms on M . We want to make a 2-form out of them, and call it ϕ∧ ψ (and make it a
mapping Vect(M)×Vect(M)→ C∞(M)). The most obvious thing we could try is,

(ϕ ∧ ψ)(V,W ) = ϕ(V )ψ(W ). (3.29)

Does it work? No, not by a long shot, since

(ϕ ∧ ψ)(V,W ) = ϕ(V )ψ(W ) ̸= −ϕ(W )ψ(V ) in general. (3.30)

Let us try

(ϕ ∧ ψ)(V,W )
???
= ϕ(V )ψ(W )− ϕ(W )ψ(V ). (3.31)
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Does it work?
We can see it is antisymmetric, since

(ϕ ∧ ψ)(V,W ) = ϕ(V )ψ(W )− ϕ(W )ψ(V ) (3.32a)

= −ϕ(W )ψ(V )− (−ϕ(V )ψ(W )) (3.32b)

= −(ϕ ∧ ψ)(W,V ), (3.32c)

which is a relief. So this is possibly a good definition.
Now the real moment of truth: is it linear in the first slot? We have something stronger than mere

linearity, it’s linear with respect to arbitrary smooth function f, g ∈ C∞(M), we have

(ϕ ∧ ψ)(fU + gV,W ) = f(ϕ ∧ ψ)(U,W ) + g(ϕ ∧ ψ)(V,W ). (3.33)

This is awesome!
And what’s really cute: we had an axiom (§34) that the formal wedge product is anticommutative on

1-forms. We see that

(ϕ ∧ ψ)(V,W ) = ϕ(V )ψ(W )− ϕ(W )ψ(V ) (3.34a)

= −(−ϕ(V )ψ(W ) + ϕ(W )ψ(V )) (3.34b)

= −(−ψ(W )ϕ(V ) + ψ(V )ϕ(W )) (3.34c)

= −(ψ ∧ ϕ)(V,W ). (3.34d)

In fact we have
(ϕ ∧ ψ)(V,W ) = −(ϕ ∧ ψ)(W,V )

= =

−(ψ ∧ ϕ)(V,W ) = (ψ ∧ ϕ)(W,V ).
(3.35)

It’s consistent!

125.1. Remark. We see the 3-form a 2-dimensional surface M ⊂ R3 is zero.

126. Corollary: Nilpotence. The reader can verify that, for any one-form ϕ, we have ϕ ∧ ϕ = 0. We
proved this formally, as a consequence of antisymmetry, but the reader may verify this is true for our concrete
realization of the wedge product.

127. Computing 2-form using basis vectors. Let us consider a 2-form η and suppose e1, e2 ∈ TpM
is a basis. We will do some multilinear algebra: once we know how η acts on all possible linear combinations
of our basis vectors e1 and e2, then we will know how it acts on any arbitrary vector in TpM .

Consider

η(αe1 + βe2, γe1 + δe2) = αη(e1, γe1 + δe2) + βη(e2, γe1 + δe2) (3.36a)

= α(γη(e1, e1) + δη(e1, e2)) + β(γη(e2, e1) + δη(e2, e2)) (3.36b)

= αγη(e1, e1) + αδη(e1, e2) + βγη(e2, e1) + βδη(e2, e2) (3.36c)

= 0 + αδη(e1, e2)− βγη(e1, e2) + 0 (3.36d)

= (αδ − βγ)η(e1, e2) (3.36e)

= det

(
α β
γ δ

)
η(e1, e2). (3.36f)

We only need to compute η(e1, e2) once, and then computing η(v,w) amounts to computing a determinant.

128. Exterior Derivative. Let us talk about one forms on R2, call such a 1-form ϕ and let e1, e2 be
the natural frame field in the u1, u2 coordinate directions. By the above formula, to figure out dϕ, we just
need to know what dϕ(e1, e2) is. In R2, we know any one-form can be written as

ϕ = f1 du
1 + f2 du

2. (3.37)
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We have

dϕ(e1, e2) = d(f1 du
1 + f2 du

2)(e1, e2) = (df1 ∧ du1 + df2 ∧ du2)(e1, e2) (3.38a)

=

((
∂f1
∂u1

du1 +
∂f1
∂u2

du2
)
∧ du1 +

(
∂f2
∂u1

du1 +
∂f2
∂u2

du2
)
∧ du2

)
(e1, e2) (3.38b)

=

(
∂f1
∂u2

du2 ∧ du1 +
∂f2
∂u1

du1 ∧ du2
)
(e1, e2) (3.38c)

=

[(
∂f2
∂u1
− ∂f1
∂u2

)
du1 ∧ du2

]
(e1, e2) (3.38d)

=

(
∂f2
∂u1
− ∂f1
∂u2

)(
du1(e1)du

2(e2)− du1(e2)du
2(e1)

)
(3.38e)

=

(
∂f2
∂u1
− ∂f1
∂u2

)
(1− 0) =

(
∂f2
∂u1
− ∂f1
∂u2

)
. (3.38f)

We stipulated in Eq (3.37) that we could write a one-form ϕ using f1, f2. This let us find dϕ(e1, e2). Could
we perform our calculation without this stipulation? That is to say, can we write dϕ(e1, e2) in terms of
derivatives of ϕ? Yes! We can, thus:

dϕ(e1, e2) =
∂

∂u2
ϕ(u1)− ∂

∂u1
ϕ(u2). (3.39)

This motivates the following definition of exterior derivatives of one-forms on surfaces, recalling the partial
velocities form a frame field on the surface.

129. Definition. On a surface M ⊂ R3, in a given patch, we have coordinate vector fields xu, xv. We
define for any 1-form ϕ on M the 2-form dϕ on M given by

dϕ(xu,xv) =
∂

∂u
ϕ(xv)−

∂

∂v
ϕ(xu), (3.40)

for any patch.

130. Consistency of Definitions. One potential problem is that our definition might not make sense.
We demand consistency when the patches overlap, like the situation doodled below:

y−1 ◦ xx−1 ◦ y

y

x

D

E

Whenever we define anything in differential geometry, we must worry about consistency on the overlap of
patches.

48



131. Maps of Surfaces. Recall our discussion of smooth maps between surfaces (§115). If we have
smooth surfaces M and N , is there a smooth function F : M → N? In order for F to be smooth, we need
for any patch D ⊂ R2 with chart x : D → M and for any patch E ⊂ R2 with chart y : E → N , there exists
a map f : D → E (defined by f = y−1 ◦ F ◦ x) which is smooth in the usual sense. We have the situation
similar to what we have doodled below:

F

x y

M N

D Ey−1 ◦ F ◦ x

Now, we have the tangent map in such an approach, defined for f : D → E using Definition 101. We patch
them together to induce a tangent map associated for F .

132. Definition. Let M , N be surfaces, F : M → N be a smooth map. The “Tangent Map” is defined,
for each p ∈M , as F∗ : TpM → TF (p)N .

133. The really slick way to approach this is if we have some path α(t) that goes through the given point
p = α(0). Then we have

F∗(α
′(0)) =

d

dt
F (α(t))

∣∣∣∣
t=0

. (3.41)

We call F∗(vp) the “Pushforward” of vp ∈ TpM along F .

134. Recall that one-forms are maps from tangent vector spaces to R. Given a one-form ϕ on N , and a
smooth map F : M → N , we can obtain a one-form on M called the “Pullback” of ϕ along F , denoted
F ∗(ϕ). This is defined by, for any vp ∈ TpM ,

(F ∗ϕ)[vp] = ϕ[F∗(vp)]. (3.42)

In short, any smooth map F : M → N on surfaces gives me two induced maps, the pushforward

F∗ : {tangent vectors on M} → {tangent vectors on N}

and, going in the opposite direction, the pullback which maps one-forms to one-form,

F ∗ : {1-forms on M} ← {1-forms on N}.

3.4 Shape Operators

135. Gauss Map. The most important map for differential geometry is the Gauss map. Let us try to
describe it.

Given any oriented surface M ⊂ R3 (meaning we can choose a specific unit normal vector field, i.e., M
is equipped with a chosen unit normal vector field U). There is a canonical map of surfaces (“canonical”
meaning we have no need to make arbitrary choices):

G : M → S2, (3.43)

where S2 is the unit sphere in R3. This is defined by taking U at each point p ∈ M and translating it to
the origin of R3. More explicitly, if we have np = (n)p = U(p) be the unit normal vector at p with vector
part n ∈ R3, then G(p) = n is the vector part of np as a point on the unit sphere, not a tangent vector on
the unit sphere. This tells us how the unit normal U rotates as we move p infinitesimally. The intuition is
sketched in Figure 3.
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•

•

p

U

G(p)

Figure 3: Gauss map for a generic surface. The value of G(p) is identical to the vector part of the unit
normal vector U(p).

136. Example. If M is a plane, then G(p) is a constant, since the plane has a constant normal vector (so
the Gauss map sends everything in the surface to a single point on the unit sphere).

137. Example. If M is a sphere of radius r > 0, then the Gauss map is just a “rescaling” of the sphere
together with a translation to the origin.

138. Differential of Gauss Map. For any surfaceM ⊂ R3, at any point p ∈M , the tanget space TpM
and its pushforward along the Gauss map to TG(p)S

2, they are parallel. What’s more: they are canonically
isomorphic, which is nicer than “just” isomorphic, because we just have to change basis vectors.

This is a bold claim, so let us prove it more explicitly. Let α : I →M be a map such that α(0) = p and
α′(0) = vp. We find, by definition of the pushforward,

G∗(vp) =
d

dt
G (α(t))

∣∣∣∣
t=0

. (3.44)

But G (α(t)) “is” U (α(t)), in the sense that the vector part of U (α(t)) equals the coordinates of the point
G (α(t)) ∈ S2. So we have

G∗(vp) =
d

dt
U (α(t))

∣∣∣∣
t=0

(3.45a)

=
d

dt

(∑
i

ui (α(t))Ui

)∣∣∣∣∣
t=0

(3.45b)

=
∑
i

(
d

dt
ui (α(t))

∣∣∣∣
t=0

Ui

)
(3.45c)

=
∑
i

vp[u
i]Ui (3.45d)

= ∇vpU. (3.45e)

139. Definition. LetM ⊂ R3 be a surface, p ∈M be an arbitrary point. We define a “Shape Operator”
Sp to be a function that maps tangent vectors from TpM and gives new tangent vectors (i.e., Sp : TpM →
TpM) by the following formula:

Sp(vp) = −∇vpU = −G∗(vp) + translation, (3.46)

where U is the unit normal vector field on M and vp ∈ TpM .
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139.1. Remark. We should worry that U is defined only on the surface, so the covariant derivative operation
may not be defined everywhere. However, if we demand the vector vp be on the surface, then we’re golden.

139.2. Remark. We see the shape operator is linear since the covariant derivative is linear. Also (and this
is not obvious) it’s symmetric with respect to the dot product [i.e., it’s self-adjoint]: Sp(w) · v = Sp(v) ·w.

140. Example. Let M be a plane, then Sp(v) = −∇vU = 0 since the normal vector is constant.

141. Example. Let M be a sphere of radius r centered at (x0, y0, z0). We find

Sp(v) = −∇vU (3.47a)

= −∇v

(∑
i

xi − xi0
r

Ui

)
(3.47b)

= −
∑
i

v

[
xi − xi0

r

]
Ui (3.47c)

= −
∑
i

∑
j

vjUj

[
xi − xi0

r

]
Ui (3.47d)

= −
∑
i

∑
j

vj

r
δijUi (3.47e)

=
−1
r

∑
i

viUi (3.47f)

=
−v
r
. (3.47g)

Hence Sp(v) = −v/r for any tangent vector v ∈ TpM .

142. Example. We see on the cylinder, pick some frame field as sketched thus:

•p

vp

wp

In the v-direction, it’s geometrically “a line”; whereas in the w-direction, it’s geometrically “a circle”. The
reader can verify therefore:

Sp(vp) = 0 (3.48a)

Sp(wp) =
−1
r
wp. (3.48b)

143. Shape Operator as Matrix. Let M be a surface in R3, and suppose we have a frame field E1,
E2 for M . We can find a matrix representation of the shape operator relative to the frame field in the usual
way,

Sp(E1) = s1,1E1 + s1,2E2,

Sp(E2) = s2,1E1 + s2,2E2.
(3.49)
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Recall the eigenvalues λj for a square matrix M contain nearly all possible information about the matrix
and further

det(M) =
∏
j

λj (3.50a)

tr(M) =
∑
j

λj . (3.50b)

For the shape operator, we find the trace and determinant contain crucial geometric information. Specifically,
these quantities encode different aspects of the curvature of the surface.

3.5 Curvature of a Surface

144. Proposition. If α : I → M is any curve on the surface M with α(0) = p and α′(0) = vp, then the
normal components of its acceleration is given by vp · Sp(vp).

Proof. Let M be a surface with unit normal vector field U , let α be an arbitrary curve given by hypothesis.
We can restrict U to the curve α, denote it Uα(t) := U (α(t)). Now, the velocity vector of α at time t ∈ I is
tangent to M , not normal to N . This means α′(t) is orthogonal to the normal vector at α(t). Consequently,
we find

α′(t) · Uα(t) = 0. (3.51)

We can take the time derivative to find

α′′(t) · Uα(t) + α′(t) · U ′
α(t) = 0, (3.52)

where
U ′
α(t) = ∇α′U = −Sα′(α′). (3.53)

In particular, we find
α′(t) · Sα(t)(α′(t)) = α′′(t) · Uα(t). (3.54)

What this tells us is α′′(t) · Uα(t) is the component of the acceleration in the direction to the normal of the
surface.

In fact, this motivates the following definition:

145. Definition. Let M ⊂ R3 be a surface and vp ∈ TpM be a unit vector. We define the “Normal
Curvature” of M in the direction spanned by vp is

k(vp) = vp · Sp(vp). (3.55)

146. Example. Recall Example 142 where we worked out the shape operator for a cylinder of radius r.
We have two unit vectors vp and wp sketched:

•p

vp

wp
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We find

k(vp) = vp · Sp(vp) = 0 (3.56a)

k(wp) = wp · Sp(wp) =
−1
r
. (3.56b)

147. On the Normal “Curvature”. If we have our surface M ⊂ R3 with unit normal vector field U
and, at some point p ∈ M , a [unit] vector vp ∈ TpM , then we can construct a plane P ⊂ R3 spanned by
U(p) and vp (so P = {c1U(p)+ c2vp ∈ R3 | c1, c2 ∈ R}). We obtain a curve given by the intersection of the
surface with this plane, γ = P ∩M . Observe γ passes through p. We can further observe the curvature of
γ at p is exactly equal to the normal curvature k(vp).

148. Definition. Given a point p ∈M , we define the “Principal Curvature” at p to be:

k1 = max{k(vp) | vp ∈ TpM, ∥vp∥ = 1}, (3.57a)

k2 = min{k(vp) | vp ∈ TpM, ∥vp∥ = 1}. (3.57b)

148.1. Remark. If k1 ̸= k2 at a point p ∈M , then there is a unique vector pointing in the k1-direction and
a unique vector pointing in the k2-direction. Furthermore, these vectors are orthogonal.

149. Proposition. Let M be a surface. If k1 ̸= k2 at p ∈M , and e1, e2 ∈ TpM are unit vectors such that
k(e1) = k1 and k(e2) = k2, then e1 and e2 are unique up to sign, and e1 · e2 = 0 and Sp(e1) = k1e1 and
Sp(e2) = k2e2. We call the directions given by e1, e2 the “Principal Directions” tangent to p.

150. Why is this so great? We can rewrite the shape operator. The recurring theme of the course is that
we may choose a frame that is particularly nice for the situation. We have a nice basis of eigenvectors. This
is great because we have the operator (which these are eigenvectors of) be diagonal,

Sp(αe1 + βe2) = αk1e1 + βk2e2. (3.58)

So with respect to this basis e1, e2 (which are the principal directions) the shape operator acts by[
α
β

]
7→
[
k1α
k2β

]
=

[
k1 0
0 k2

] [
α
β

]
. (3.59)

This leads to a much more beautiful notion of curvature. We’d like to get “just a number” at each point (or
something like that) for describing curvature of a surface. We have:

151. Definition. Let M be a surface. We define the “Gaussian Curvature” K = det(S) as the determi-
nant of the shape operator, and the “Mean Curvature” H = tr(S)/2 as the trace divided by the number
of dimensions of M .

151.1. Remark. The Gaussian curvature is an intrinsic geometric quantity. Often finding the principal
curvatures is hard, but computing the Gaussian curvature can be easier.

151.2. Remark. The mean curvature is an extrinsic geometric quantity.

152. Examples. Here are a few examples of the Gaussian and mean curvatures:
1. Cylinder: K = (0) · (−1/r) = 0, H = −1/(2r)
2. Sphere: K = 1/r2, H = −1/r
3. Plane: K = 0, H = 0.

153. Definition. Let M be a surface.
1. We call M “Flat” if its Gaussian curvature is zero, K = 0.
2. We call M “Minimal” (or minimum) if its mean curvature is zero, H = 0.
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Exercises

1. Compute the Gaussian and mean curvature for:
(a) the saddle z = x2 − y2,
(b) the monkey saddle: z = x3 − 3xy.

2. Let f : Σ→ R be a real-valued function on the surface Σ, let g : R→ R be some smooth function.
(a) Prove or find a counter-example: for any vp ∈ TpΣ, we have vp[g ◦ f ] = g′(f(p))vp[f ]
(b) Deduce d(g ◦ f) = (g′ ◦ f) df .

3. Let T 2 be the familiar torus.
(a) What are the image curves under the Gauss map for meridians and parallels of T 2?
(b) Are there any points q ∈ G(T 2) for which exactly two distinct points on the torus p1 ∈ T 2 and

p2 ∈ T 2 are mapped to G(p1) = G(p2) = q?
4. Consider the surface Σ defined by z = xy.

(a) What are the image curves under the Gauss map for x = constant on Σ?
(b) Are there any points q ∈ G(Σ) for which exactly two distinct points on the surface p1 ∈ Σ and

p2 ∈ Σ (so p1 ̸= p2) which are mapped to G(p1) = G(p2) = q?
5. For each of the following surfaces, find the quadratic approximation near the origin:

(a) z = x2 + y2

(b) z = x2 − y2
(c) x2 + y2 − z2 = 0.
(d) z = (2x+ 3y)5.

6. Recall from linear algebra, if A is any n × n matrix, the “Characteristic Polynomial” of A is the
polynomial in λ defined by

p(λ) = det(A− λ · In),

where In is the n×n identity matrix. Compute the characteristic polynomial for the shape operator.
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4 References

Great books to consult while reading these notes include:
[1] Barrett O’Neill, Elementary Differential Geometry. Revised Second edition, Academic Press, 2006.

(Caution: O’Neill’s notation can be odd at times, like writing the transpose of a matrix as tM instead
of MT or M⊤.)

[2] Manfredo do Carmo, Differential Geometry of Curves and Surfaces. Revised and Updated Second
Edition, Dover, 2016.

The “next steps” would be to read the wonderful books:
[3] Michael Spivak, Calculus on Manifolds: A Modern Approach To Classical Theorems Of Advanced

Calculus. CRC Press, 1971.
[4] John Milnor, Topology from the Differentiable Viewpoint. Princeton University Press, 1997.
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