
BOURBAKI’S FORMAL SYSTEM IN HASKELL

ALEX NELSON

Abstract. We implement the abstract syntax tree and rudimentary syntac-
tic support for the formal language found in Bourbaki’s Theory of Sets [1].

Although we do not implement any of the deductive apparatus, it should be

simple enough for a motivated reader. Caution: If you are trying to run this
on a computer with less than 16 TB of RAM, then you should expect to wait

a long time for it to finish.
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1. Formal Language of Bourbaki

Bourbaki’s formal system is rather difficult to understand, since it’s jettisoned
almost immediately after construction, and uses many idiosyncratic terms. My ref-
erence will be the English translation published by Springer, the softcover reprint.1

Aitkens’s commentary [2] is also worth consulting. The basic “Rosetta stone” of
terminology appears to be:

Bourbaki ≈ Modern Terminology
Sign ≈ Letter (of a fixed ambient alphabet)

Assembly ≈ String (over the ambient alphabet)
Letter ≈ Variable

Specific Sign ≈ Primitive notion (of a theory)
Relation ≈ Logical formula

Formative Criteria ≈ Formal grammar for well-formed formulas

Some terms have no modern translation, like “logical sign” appears to refer to
“primitive notions in their underlying logic”.

We will hide and from Prelude, since it is more natural to introduce a function
which is Bourbaki’s conjunction operator.

import Data.Set hiding (cartesianProduct)

import Prelude hiding (and)

Bourbaki’s “letter” is what we would call a “variable”. I’m going to encode it
as an arbitrary string.

type Letter = String

Bourbaki’s “term” resembles what we think of terms (namely, they’re “math-
ematical objects” as opposed to propositions). However, Bourbaki uses Hilbert’s
ε-calculus, which has fallen into relative obscurity. Complicating matters, Bourbaki
uses a convoluted system of “linkages” to avoid distinguishing bound variables from
free variables.

The basic idea of Hilbert’s ε-calculus can be understood piecemeal. First, we
think of a predicate in first-order logic as being a term of type

type Predicate = Term → Formula {-intuition, not actual code -}
Then we can understand a “choice operator” as taking a predicate; if there is an
object which satisfies that predicate, then the choice operator returns it. If there
is no object which satisfies the predicate, then an arbitrary-but-fixed object is
returned. Hilbert uses εxP [x] as the notation for this term. Bourbaki sometimes
uses τxP [x] and other times replaces all instances of x by a box □, then draws
“linkages” (i.e., lines) from those boxes to the τ . This is rather difficult to typeset.
Instead, we will use de Bruijn levels2, and call the bound de Bruijn level a TBox
keeping track of the depth and the variable it replaced.

Bourbaki also introduces the notation for substituting a term T for a variable x in
an expression S by (T | x)S. We will add this to the abstract syntax tree encoding
for a term. Later, we will create a typeclass for syntactic classes in Bourbaki’s
system which support substitutions, in order to actual perform a substiution.

1Apparently this is the English translation dated 1968 of the French 1970 edition. How this

time-traveling is possible, well, that’s beyond my understanding.
2The difference between a de Bruijn level and index depends on where you start counting.
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data Term = TTau Integer Letter Relation

| TBox Integer Letter

| TVar Letter

| TSubst Term Letter Term

| TPair Term Term

deriving (Show ,Eq)

The notion of a “formula” in Bourbaki is called a “relation”, which is perhaps
an unfortunate choice of words.

Bourbaki works with an adequate set of connectives, namely disjunction A ∨ B
and negation ¬A. The other connectives are just abbreviations for expression; in
(I §1.1) example 1, Bourbaki quickly mentions in as obscure a manner as possible
that:

(1a) A =⇒ B := (¬A) ∨B.
In (I §3.4), Bourbaki defines conjunction as:

(1b) A ∧B := ¬((¬A) ∨ (¬B)).

In (I §3.5), Bourbaki defines “equivalence” (bi-conditional) as:

(1c) A ⇐⇒ B := (A =⇒ B) ∧ (B =⇒ A).

We introduce helper functions to improve the readability of encodings.
We can substitute a term for a variable in a relation, which Bourbaki denotes

by (T | x)A where T is a term and A is a relation. Like we did for terms, we are
forming an abstract syntax tree for relations, and we have a node encoding this.

The only primitives in Bourbaki’s system of set theory are equality of terms
t1 = t2 and set membershing t1 ∈ t2.

data Relation = ROr Relation Relation

| RNot Relation
| RSubst Term Letter Relation

| REq Term Term

| RIn Term Term

deriving (Show ,Eq)

and :: Relation → Relation → Relation

and a b = RNot (ROr (RNot a) (RNot b))

implies :: Relation → Relation → Relation

implies a b = ROr (RNot a) b

iff :: Relation → Relation → Relation

iff a b = and (implies a b) (implies b a)

1.1. Substitutions. Now we can introduce a type class which abstracts the notion
of performing substitutions. This is justified by formative criteria CF8 from (I §1.4)
which states that the assembly (T | x)A is a term when A is a term, and it’s a
relation when A is a relation.

class Subst a where

subst :: Letter → Term → a → a

When we work with terms, we can consider the following cases:
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(1) (T | x)y =

{
T if x = y

y otherwise

(2) (T | x)τxA = τxA since x no longer appears in τxA
(3) (T | x)τyA = τy((T | x)A) if y ̸= x (and we use the notion of substitution

in a relation)
(4) (T | x)□ = □ since □ is “just” a constant term expression

As far as (T | x)
(
(T ′ | y)T ′′) for terms T ′, T ′′ and variable y, this requires a bit

of care. If x = y, then nothing is done. On the other hand, if x ̸= y, criteria CS2
(I §1.2) tells us how to “commute” substitutions:

(2) (B | x)(C | y)A = ((B | x)C | y)(B | x)A.
This gives us enough information to define substitution for terms:

instance Subst Term where

subst y t t ′ = case t ′ of

(TBox ) → t ′

(TVar x ) → if x ≡ y

then t

else t ′

(TSubst b x a) → if x ≡ y

then (TSubst (subst y t b) x a)

else (TSubst (subst y t b) x (subst y t a))

(TTau n x p) → if x ≡ y

then t ′

else (TSubst t y t ′)

(TPair t1 t2 ) → TPair (subst y t t1 ) (subst y t t2 )

When we work with relations, criteria of substitution CS5 from (I §1.2) gives us
the explicit definition for almost all relations:

(1) (T | x)(A ∨B) = ((T | x)A) ∨ ((T | x)B)
(2) (T | x)(¬A) = ¬((T | x)A)
(3) (T | x)(t1 = t2) = ((T | x)t1) = ((T | x)t2)
(4) (T | x)(t1 ∈ t2) = ((T | x)t1) ∈ ((T | x)t2)

Bourbaki also includes in CS5 instructions for the derived connectives (T | x)(A =⇒
B), (T | x)(A ∧B), (T | x)(A ⇐⇒ B), but these are not needed.

instance Subst Relation where

subst y t (ROr a b) = ROr (subst y t a) (subst y t b)

subst y t (RNot a) = RNot (subst y t a)

subst y t (RSubst b x r) = if y ≡ x then (RSubst b x r)

else RSubst (subst y t b) x (subst y t r)

subst y t (REq a b) = REq (subst y t a) (subst y t b)

subst y t (RIn a b) = RIn (subst y t a) (subst y t b)

1.2. Simplification. As far as actually simplifying expressions, we have this op-
eration abstracted away in its own typeclass.

class Simplifier a where

simp :: a → a
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There are a few sources of simplification of formulas: performing substitutions,
replacing A ∨ ¬A with a simpler tautology, and eliminating double negatives.

instance Simplifier Relation where

simp (ROr a b) = let a ′ = simp a

b′ = simp b

in if (simp (RNot a ′)) ≡ b′

then (REq (TVar "_") (TVar "_"))

else if a ′ ≡ b′

then a ′

else ROr a ′ b′

simp (RNot (RNot a)) = simp a

simp (RNot a) = RNot (simp a)

simp (RSubst t x r) = simp $ subst x t r

simp (REq a b) = let a ′ = simp a

b′ = simp b

in if a ′ ≡ b′

then REq (TVar "_") (TVar "_")

else REq (simp a) (simp b)

simp (RIn a b) = RIn (simp a) (simp b)

Simplifying terms boils down to performing substitutions. Variables and bound
variables (TBox ) are in simplest form.

instance Simplifier Term where

simp (TTau m x r) = TTau m x (simp r)

simp (TBox m x ) = TBox m x

simp (TVar x ) = TVar x

simp (TSubst t x b) = simp $ subst x t b

simp (TPair a b) = TPair (simp a) (simp b)

1.3. *Deductive System. Just a few remarks about the “deductive system” Bour-
baki uses. Specifically, Bourbaki uses a Hilbert proof calculus, but not for first-order
logic. Instead Bourbaki uses Hilbert’s ε-calculus. Consequently, there are only two
inference rules given (I §2.2):

(a1) Any instance of an axiom may be used at any time in a proof;
(a2) Any instance of a “scheme” may be used at any time in a proof;
(b) Modus Ponens: if in previous proof steps A and A =⇒ B have been

established, then we may write down B in a proof step.

Axioms (I §2.1) are either “explicit axioms” (which is what we normally think of
when defining a new gadget) or “implicit axioms”, which are obtained by applying a
scheme. Schemes are “rules” which constructs a formula—Bourbaki is vague about
its meaning. Derived inference rules are given in items labeled C1, C2, C3, . . . .

The axioms Bourbaki gives may be found summarized in the very last page of
the book. The first four are the so-called “Russell–Bernays axioms”3 (I §3.1) where
A =⇒ B is understood as an abbreviation for (¬A) ∨B:

3This appears to be the axioms found in the Principia Mathematica, specifically correspond-
ing to axioms ∗1.2, ∗1.3, ∗1.4, and ∗1.6 in Principia. Bernays proved its logical completeness in
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(S1) (A ∨A) =⇒ A
(S2) A =⇒ (A ∨B)
(S3) (A ∨B) =⇒ (B ∨A)
(S4) (A =⇒ B) =⇒ ((C ∨A) =⇒ (C ∨B)).

Then axioms are given for quantified theories (I §4.2) as:
(S5) If R is a relation of theory T , if T is a term in T , and if x is a letter, then

the relation (T | x)R =⇒ (∃x)R is an axiom.

The last two logical axioms concern equality (I §5.1):
(S6) Let x be a letter, let T and U be terms in theory T , and let R[x] be a

relation in T . Then the relation (T = U) =⇒ (R[T ] ⇐⇒ R[U ]) is an
axiom.

(S7) If R and S are relations in a theory T , and if x is a letter, then the relation
((∀x)(R ⇐⇒ S)) =⇒ (τx(R) = τx(S)) is an axiom.

The usual quantifier introduction and elimination rules are given as derived infer-
ence rules: S5 is ∃-introduction, C27 is ∀-introduction, and C30 is ∀-elimination.
Existential-elimination can be given automatically using the τ -operator to obtain
the witness term.

2. Epsilon Calculus Implementation

2.1. De Bruijn levels. We don’t actually need to keep track of which object a
τxA refers to. We encode the □ using de Bruijn levels. As a consistency check, we
keep track of the variable being bound as well as the depth of the τ (which will
match the de Bruijn level).

class Shift a where

shift :: a → a

For terms, this amounts to adding 1 to the level of τ and □ instances. For
substitutions, this requires shifting in both the body and the term being substituted
in.

instance Shift Term where

shift (TTau m x r) = TTau (m + 1) x r

shift (TBox m x ) = TBox (m + 1) x

shift (TVar x ) = TVar x

shift (TSubst b x a) = TSubst (shift b) x (shift a)

shift (TPair a b) = TPair (shift a) (shift b)

For relations, this “descends” the syntax tree to terms, which are then shifted.

instance Shift Relation where

shift (ROr a b) = ROr (shift a) (shift b)

shift (RNot a) = RNot (shift a)

shift (RSubst a x r) = RSubst (shift a) x (shift r)

“Axiomatische Untersuchungen des Aussagen-Kalkuls der Principia Mathematica.” Mathematis-

che Zeitschrift 25 (1926) 305–320; translated into English in Richard Zach’s Universal Logic: An

Anthology (2012) pp.43–58. Russell and Whitehead call these axioms “principle of tautology”,
“principle of addition”, “principle of permutation”, “principle of summation”. Coincidentally, this

is also the axioms found in Hilbert and Ackermann’s Grundzüge der theoretischen Logik (1928).
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shift (REq a b) = REq (shift a) (shift b)

shift (RIn a b) = RIn (shift a) (shift b)

2.2. Tau operator. The τxR can be formed using this helper function tau x R,
which will handle the substitution of □ for x in R (along with all necessary shifting).

tau :: Letter → Relation → Term

tau x r = TTau 0 x $ subst x (TBox 0 x ) (shift r)

2.3. Logical quantifiers. We can introduce logical quantifiers (with some simpli-
fication handled automatically) since Bourbaki follows Hilbert and defines

(3) ∃x.A[x] := A[τxA[x]]

and by de Morgan’s law,4

(4) ∀x.A[x] := A[τx¬A[x]].

But since I’m more skeptical of accidentally writing some kind of bug, I’m just
going to use ¬(∃x.¬A[x]) as the definition for the universal quantifier. This gives
us the code:

exists :: Letter → Relation → Relation

exists x r = simp $ subst x (tau x r) r

for all :: Letter → Relation → Relation

for all x r = simp $ RNot (exists x (RNot r))

Note: the ε-calculus is responsible for the ridiculously large sizes of the assemblies,
specifically because we are using these definitions of quantifiers. One bit of low-
hanging fruit would be to introduce one of these quantifiers as a primitive, and define
the other in terms of the identity ¬(∃x.¬P [x]) ⇐⇒ ∀x.P [x] or ¬(∀x.¬P [x]) ⇐⇒
∃x.P [x]. We would also need to add rules to the simplifier to rewrite

P [τxP [x]] 7→ ∃x.P [x]

and

P [τx¬P [x]] 7→ ∀x.P [x].
If we were to add axioms to support this, I suppose (since the first four axioms
describing propositional logic appear to be from Hilbert and Ackermann, we can
continue this path) we would follow Hilbert and Ackermann’s Grundzüge der theo-
retischen Logik (1928):

(1) (∀x.P [x]) =⇒ P [x]
(2) P [x] =⇒ (∃x.P [x]).

We would add the inference rules:

(1) If x is not free in φ and we have proven φ =⇒ ψ[x], then we can infer
φ =⇒ ∀x.ψ[x];

(2) If we have proven ψ[x] =⇒ φ, then we can infer (∃x.ψ[x]) =⇒ φ.

4If we let B[x] = ¬A[x], and using de Morgan’s law ¬(∃x¬A[x]) ⇐⇒ ∀x.A[x], then
¬(∃x¬A[x]) ⇐⇒ ¬(∃x.B[x]) ⇐⇒ ¬B[τxB[x]] ⇐⇒ ¬¬A[τxB[x]]. Double negation simplifies

this to ∀x.A[x] ⇐⇒ A[τx¬A[x]].
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3. Fresh Variables for Assemblies

3.1. Set of all variables. We need to form the set of all variables (including, for
the sake of caution, the variables which were captured by τ expressions).

class Vars a where

vars :: a → Set Letter

For terms, this operation just descends to □ and letters, removing any variables
which are substituted out. Since we use tau to perform the choice operation, sub-
stitutions should have already occurred.

instance Vars Term where

vars (TTau x r) = Data.Set .union (Data.Set .singleton x ) (vars r)

vars (TBox x ) = (Data.Set .singleton x )

vars (TVar x ) = Data.Set .singleton x

vars (TSubst b x a) = Data.Set .delete x (Data.Set .union (vars a) (vars b))

vars (TPair a b) = Data.Set .union (vars a) (vars b)

For relations, this just descends down to terms, and form the unions of the subtrees.
As for terms, upon the substitution nodes we simply remove the variable being re-
placed by terms. (And, as for terms, this shouldn’t really occur since simplification
will perform the replacement.)

instance Vars Relation where

vars (ROr a b) = Data.Set .union (vars a) (vars b)

vars (RNot a) = vars a

vars (RSubst a x r) = Data.Set .delete x (Data.Set .union (vars a) (vars r))

vars (REq a b) = Data.Set .union (vars a) (vars b)

vars (RIn a b) = Data.Set .union (vars a) (vars b)

3.2. Fresh Variables. Given a set of variables V , and some variable we’d like to
use x, we will check if x ∈ V and if so try some variant of x to see if it occurs in
V . This is done by adding a subscript xn where n is an integer we increment upon
trying again.

freshVar :: Letter → Int → Set Letter → Letter

freshVar x m vs = if (x ++ (show m)) ‘Data.Set .member ‘ vs

then freshVar x (m + 1) vs

else x ++ (show m)

Now, for any Haskell expression which is an instance of the Vars typeclass, we
can find a fresh variable for it. This checks if the variable x appears in the set of
variables; if not, then just use it. Otherwise, we need to find a “fresher” version of
the variable (by appending a numeric value “subscript” to it).

fresh ::Vars a ⇒ Letter → a → Letter

fresh x fm = let vs = vars fm

in if x ∈ vs

then freshVar x 0 vs

else x
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4. Length of terms

4.1. Counting the occurrences of a variable. How many times does a variable
occur in an expression? We can count this, using a typeclass.

class Occur a where

occur :: Letter → a → Integer

Now, x doesn’t appear in τxR, so its occurrences should short-circuit to zero. But
if somehow it gets through, we should count x appearing zero times in □ bound
variables.

For substitutions, there is some subtlety here, which is a source of bugs in naive
implementations. Observe, if x = y, then (B | x)A will replace all n instances of x
in A by B. But if B has m instances of x, then we get m · n instances of x in the
substitution (B | x)A.

However, when x ̸= y, then (B | y)A will replace all ny instances of y in A by B.
When there are m instances of x in B, this results in an additional nym instances
of x in (B | y)A. When there are nx instances of x in A before substitution, then
we have a total of nym+ nx occurrences of x in (B | y)A.

instance Occur Term where

occur x (TTau y r) = if x ≡ y then 0 else (occur x r)

occur x (TBox ) = 0

occur x (TVar y) = if x ≡ y then 1 else 0

occur x (TSubst b y a) = if x ≡ y

then (occur x b) ∗ (occur x a)

else (occur x b) ∗ (occur y a) + (occur x a)

occur x (TPair a b) = (occur x a) + (occur x b)

For relations, the same subtlety surrounding occurrences of a variable in a sub-
stitution (but the same reasoning holds for relations as for terms). In all other
cases, it boils down to counting the occurrences in the subtrees, and adding them
all together in the end.

instance Occur Relation where

occur x (ROr a b) = (occur x a) + (occur x b)

occur x (RNot a) = occur x a

occur x (RSubst a y r) = if x ≡ y

then (occur x a) ∗ (occur x r)

else (occur x a) ∗ (occur y r) + (occur x r)

occur x (REq a b) = (occur x a) + (occur x b)

occur x (RIn a b) = (occur x a) + (occur x b)

4.2. Length of assemblies. Now we come to the main part of the original moti-
vation for this program, what is the length of an assembly? For any assembly A,
we will write |A| for the length of the assembly A. We have a typeclass abstracting
this notion:

class Len a where

len :: a → Integer

For terms, we have the inductive definition:
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(1) |τxR| = 1 + |R|
(2) |□| = 1
(3) |x| = 1
(4) |(B | x)A| = (|B| − 1) · o(x,A) + |A| where o(x,A) is the number of occur-

rences of x in A; if one is suspicious of this claim, it’s because |(B | x)A| =
|B| · o(x,A) + (|A| − o(x,A)), and then simple algebra gives us the result.

(5) |⟨A,B⟩| = 1 + |A| + |B| since we are using the “original” convention that

C

t1 t2 is an ordered pair, which just prepends the concatenation of strings
with one symbol.

instance Len Term where

len (TTau r) = 1 + len r

len (TBox ) = 1

len (TVar ) = 1

len (TSubst b x a) = ((len b)− 1) ∗ (occur x a) + (len a)

len (TPair a b) = 1 + (len a) + (len b)

For relations, we have

(1) |A ∨B| = 1 + |A|+ |B|
(2) |¬A| = 1 + |A|
(3) |(B | x)R| = (|B| − 1)o(x,R) + |R| where o(x,R) is the number of occur-

rences of the variable x in the relation R
(4) |A = B| = 1 + |A|+ |B|
(5) |A ∈ B| = 1 + |A|+ |B|

instance Len Relation where

len (ROr a b) = 1 + len a + len b

len (RNot a) = 1 + len a

len (RSubst a y r) = ((len a)− 1) ∗ (occur y r) + (len r)

len (REq a b) = 1 + len a + len b

len (RIn a b) = 1 + len a + len b

5. Set Theory

Caution: the code we implement assumes we are working with sentences, i.e.,
formulas with no free variables. This is fine for our purposes, but we should include
code to make sure the variables we’re quantifying over are fresh. This adds needless
overhead to our implementation, and adds no benefit.

After C49 in (II §1.4), Bourbaki introduces the notation Ex(R) for
To represent the term τy(∀x)((x ∈ y) ⇐⇒ R) which does not
depend on the choice of y (distinct from x and not appearing in R),
we shall introduce a functional symbol Ex(R); the corresponding
term does not contain x. This term is denoted by ‘the set of all x
such that R’.

We denote this by ens x R.

ens :: Letter → Relation → Term

ens x r = let y = fresh "y" r

in tau y (for all x (iff (RIn (TVar x ) (TVar y)) r))



BOURBAKI’S FORMAL SYSTEM IN HASKELL 11

The unordered pair is introduced in (II §1.5), defined as Ez(x = z ∨ y = z) which
is then abbreviated as {x, y}. This exists and is unique by the second axiom of
Bourbaki’s set theory, which means it really is a well-defined notion.

-- The set with two elements, a.k.a., the unordered pair.

pair :: Term → Term → Term

pair x y = let z = fresh "z" (REq x y)

in ens z (ROr (REq x (TVar z )) (REq y (TVar z )))

5.1. Ordered Pairs. This is formalized in (II §2) of Bourbaki’s Theory of Sets.
Bourbaki defines

C

T U for the ordered pair of T and U as a primitive notion. But
we can use the usual set-theoretic construction of ordered pairs. Purists can modify
code in the way following explicit instructions.

Now, before we can define the ordered pair using the familiar set-theoretic defi-
nition (x, y) = {{x}, {x, y}}, we need to define an unordered singleton.

ssingleton :: Term → Term

ssingleton x = let z = fresh "z" x

in ens z (REq x (TVar z ))

Now, for ordered pairs, we use the set-theoretic definition for debugging purposes
(if you wanted to use the original Bourbaki formulation, you can replace this line
of code with the primitive TPair data constructor)

-- use orderedPair = TPair for debugging purposes

orderedPair :: Term → Term → Term

orderedPair = TPair

-- orderedPair x y = pair (ssingleton x) (pair x y)

orderedTriple :: Term → Term → Term → Term

orderedTriple x y z = orderedPair (orderedPair x y) z

5.2. Cartesian Product of Sets. The Cartesian product of sets is defined in
(II §2.2) Definition 1 as

(5) X × Y := Ez
(
(∃x)(∃y)(z = (x, y) ∧ x ∈ X ∧ y ∈ Y )

)
.

The implementation follows this definition:

cartesianProduct :: Term → Term → Term

cartesianProduct x y = ens "z" (exists "x’"

(exists "y’"

(and (REq (TVar "z")

(orderedPair (TVar "x’") (TVar "y’")))

(and (RIn (TVar "x’") x )

(RIn (TVar "y’") y)))))
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5.3. Subsets. In (II §1.2), Definition 1, Bourbaki defines the predicate for a subset
X ⊂ Y as:

(6) X ⊂ Y := ∀z(z ∈ X =⇒ z ∈ Y ).

We use this definition in the construction:

subset :: Term → Term → Relation

subset u v = for all "s" (implies (RIn (TVar "s") u) (RIn (TVar "s") v))

5.4. Empty set. The empty set is defined as τX((∀y)(y /∈ X)) in comments to-
wards the end of (II §1.7), and we use this as the definition for it:

emptySet :: Term

emptySet = tau "X" (for all "y" (RNot (RIn (TVar "y") (TVar "X"))))

5.5. Cardinality of sets. In (III §3.1), Bourbaki defines the notion of “the car-
dinal of a set” using equipotential sets. Two sets A and B are called equipotent,
denoted by Bourbaki as Eq(A,B), if there exists a bijection between sets A and B.
Then the cardinality of a set A is defined as card(A) := τZ(Eq(A,Z)). But in a
footnote, Bourbaki tells us the explicit definition for 1 := card({∅}). It’s tedious:

(7) τZ

(
(∃u)(∃U)

(
u = (U, {∅}, Z) and U ⊂ {∅} × Z

and (∀x)
(
(x ∈ {∅}) =⇒ (∃y)((x, y) ∈ U)

)
and (∀x)(∀y)(∀y′)

(
((x, y) ∈ U and (x, y′) ∈ U) =⇒ (y = y′)

)
and (∀y)((y ∈ Z) =⇒ (∃x)((x, y) ∈ U))

))
This allows us to find the primitive definition of card(A):

(8) card(A) := τZ

(
(∃u)(∃U)

(
u = (U,A,Z) and U ⊂ A× Z

and (∀x)
(
(x ∈ A) =⇒ (∃y)((x, y) ∈ U)

)
and (∀x)(∀y)(∀y′)

(
((x, y) ∈ U and (x, y′) ∈ U) =⇒ (y = y′)

)
and (∀y)((y ∈ Z) =⇒ (∃x)((x, y) ∈ U))

))
Here is where all the low-hanging fruit for optimization occurs, we could use dif-
ferent definitions of cardinality. There are five terms in this definition contained
in the scope of the outer two universal quantifiers ∀u∀U(. . . ) which we define as
termA, termB , termC , termD , and termE . We faithfully write the code for this
convoluted definition:

termA :: Term → Letter → Letter → Letter → Relation

termA x u upperU z = REq (TVar u) (orderedTriple (TVar upperU ) x (TVar z ))

termB :: Term → Letter → Letter → Relation

termB x upperU z = subset (TVar upperU ) (cartesianProduct x (TVar z ))

termC :: Term → Letter → Relation

termC x upperU = for all "x" (implies (RIn (TVar "x") x )

(exists "y" (RIn (orderedPair (TVar "x") (TVar "y"))
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(TVar upperU ))))

termD :: Letter → Relation

termD upperU = for all "x"

(for all "y" (for all "z"

(implies (and (RIn (orderedPair (TVar "x") (TVar "y")) (TVar upperU ))

(RIn (orderedPair (TVar "x") (TVar "z")) (TVar upperU )))

(REq (TVar "y") (TVar "z")))))

termE :: Letter → Letter → Relation

termE upperU z = for all "y" (implies

(RIn (TVar "y") (TVar z ))

(exists "x" (RIn (orderedPair (TVar "x") (TVar "y"))

(TVar upperU ))))

card :: Term → Term

card x = tau "Z" (exists "u" (exists "U" (and (termA x "u" "U" "Z")

(and (termB x "U" "Z")

(and (termC x "U")

(and (termD "U")

(termE "U" "Z")))))))

As examples of this definition, Bourbaki defines 1 and 2 as

one :: Term

one = card (ssingleton emptySet)

two :: Term

two = card (pair emptySet (ssingleton emptySet))

5.6. Sums. The value f(x) corresponding to x of a function f , when G is the graph
of f , is (slightly optimized) the y such that (x, y) is in G. Bourbaki defines (II §3.1,
definition 3, remark 1) the image of a set X according to a graph G as

ens y (exists "x" (and (RIn (TVar "x") X )

(RIn (orderedPair (TVar "x") y) G)))

But since X is a singleton for our case, we don’t need to check x ∈ {x}. I further
simplify things and just say the value of x in G is that y such that (x, y) ∈ G.

val :: Term → Term → Term

val x graph = tau "y" (RIn (orderedPair x (TVar "y")) graph)

In a remark after Proposition 5 (III §3.3), Bourbaki notes if a and b are two
cardinals, and I a set with two elements (e.g., the cardinal 2), then there exists a
mapping f of I onto {a, b} for which the sum of this family is denoted a+ b.

The sum of a family of sets is discussed in (II §4.8) Definition 8 gives it as:

Let (Xi)i∈I be a family of sets. The sum of this family is the union
of the family of sets (Xi × {i})i∈I .

The notion of a family of sets is defined in (II §3.4). It is basically the graph of a
function I → {Xi}.
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The union of a family of sets (Xi)i∈I is (II §4.1 Definition 1) Ex(∃i)((i ∈ I) and (x ∈
X)) The family {X0, X1} when X0 = X1 = 1 is then cartesianProduct two one.
Combining this together, we get the sum as:

setSum :: Term → Term → Term

setSum idx family = ens "x" (exists "i"

(and (RIn (TVar "i") idx )

(RIn (TVar "x") (val (TVar "i") family))))

When a and b are cardinal numbers, Bourbaki uses the indexed family {f1, f2}
where f1 = a and f2 = b. This indexed family coincides with the cartesian product
of the cardinality 2 with the unordered pair {a, b}. Then the sum of this family is
the sum of cardinals.

cardSum :: Term → Term → Term

cardSum a b = setSum two (cartesianProduct two (pair a b))

Now, the big moment, the equation asserting 1 + 1 = 2.

onePlusOneIsTwo :: Relation

onePlusOneIsTwo = REq two (cardSum one one)

5.7. Curiousities. I was curious about the length of various terms, so I defined
them.

pairOfOnes :: Term

pairOfOnes = pair one one

productTwoOnes :: Term

productTwoOnes = cartesianProduct two pairOfOnes

6. Main Method

OK, ready? Your pulse is relaxed, you don’t need a wet towel on your forehead or
anything? Good, now we have the main method which will print out the statistics
regarding the lengths of the various things:

main = do

putStrLn ("The size of {x, y} = "++ (show (len (pair (TVar "x") (TVar "y")))))

putStrLn ("Size of (x, y) = "++ (show (len (orderedPair (TVar "x") (TVar "y")))))

putStrLn ("Size of the Empty Set = "++ (show (len emptySet)))

putStrLn ("Size of $X\\times Y$ = "++ (show (len (cartesianProduct (TVar "X") (TVar "Y")))))

putStrLn ("Size of 1 = "++ (show (len one)))

putStrLn ("Size of ‘{1,1}‘ = "++ (show (len pairOfOnes)))

putStrLn ("Size of ‘2*{1,1}‘ = "++ (show (len productTwoOnes)))

putStrLn ("Size of ’1+1=2’ = "++ (show (len onePlusOneIsTwo)))

putStrLn ("Size of 1* = "++ (show (len (simp one))))

putStrLn ("Size of A = "++ (show (len (termA (ssingleton emptySet) "u" "U" "Z"))))

putStrLn ("Size of B = "++ (show (len (termB (ssingleton emptySet) "U" "Z"))))

putStrLn ("Size of C = "++ (show (len (termC (ssingleton emptySet) "U"))))

putStrLn ("Size of D = "++ (show (len (termD "U"))))

putStrLn ("Size of E = "++ (show (len (termE "U" "Z"))))
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